Abstract:
A semiconductor device comprises a silicate interface layer and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises metal alloy oxides.
Abstract:
A semiconductor device comprises a silicate interface layer and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises metal alloy oxides.
Abstract:
A semiconductor device comprises a silicate interface layer and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises metal alloy oxides.
Abstract:
The present invention performs multiscreen configuration and multiscreen management by using a plurality of screens and a plurality of methods in order to represent a plurality of service contents. In accordance with a multiscreen configuration method of the present invention, by mutually assigning one or more broadcasting services, one or more logical screens, one or more display screens, and one or more output ports, ultimately outputting service contents which are executed on screens assigned by output ports, and setting, changing, and reporting configuration of a multiscreen, the configuration of the multiscreen may be set or reset so as to effectively output various service contents on the multiscreen by using a desired method.
Abstract:
A semiconductor chip package including a semiconductor chip including a first surface having bonding pads, a second surface facing the first surface, and sidewalls; a molding extension part surrounding the second surface and the sidewalls of the semiconductor chip; redistribution patterns extending from the bonding pads over the molding extension part, and electrically connected to the bonding pads; bump solder balls on the redistribution patterns; and a molding layer configured to cover the first surface of the semiconductor chip and the molding extension part, while exposing portions of each of the bump solder balls. The molding layer has concave meniscus surfaces between the bump solder balls adjacent to each other.
Abstract:
Provided is a one-transistor (1T) floating-body DRAM cell device including a substrate; a gate stack which is formed on the substrate; a control electrode which is disposed on the substrate and of which some or entire portion is surrounded by the gate stack; a semiconductor layer which is formed on the gate stack; a source and a drain which are formed in the surface of the semiconductor layer and of which lower surfaces are not in contact with the gate stack; a gate insulating layer which is formed on the semiconductor layer; and a gate electrode which is formed on the gate insulating layer, wherein the remaining portion of the semiconductor layer excluding the source and the drain is configured as a floating body. The miniaturization characteristic and performance of a MOS-based DRAM cell device can be improved, and a memory capacity can be increased.
Abstract:
A semiconductor package and a method of manufacturing the semiconductor package. The semiconductor package includes a first package that a first semiconductor chip is mounted on a front side of a first substrate and a redistributed pad including a first redistributed pad electrically connected to the first substrate and a second redistributed pad electrically connected to the first redistributed pad is disposed on the first semiconductor chip and a second package that a second semiconductor chip is mounted on a front side of a second substrate, the second package including a connection member electrically connected to the second redistributed pad. The connection member electrically connected to the redistributed pad electrically connects the first and second packages to each other.
Abstract:
A multi-chip package includes a mounting substrate, a first semiconductor chip, a second semiconductor chip, a reinforcing member, conductive wires and an encapsulant. The first semiconductor chip is disposed on the mounting substrate. The second semiconductor chip is disposed on the first semiconductor chip. An end portion of the second semiconductor chip protrudes from a side portion of the first semiconductor chip. A reinforcing member is disposed on an overlapping region of the second semiconductor chip where the second semiconductor chip overlaps with the side portion of the first semiconductor chip such that the reinforcing member decreases downward bending of the second semiconductor chip from the side portion of the first semiconductor chip. The conductive wires electrically connect the first and second semiconductor chips to the mounting substrate. The encapsulant is disposed on the mounting substrate to cover the first and second semiconductor chips and the conductive wires.
Abstract:
A semiconductor device and related methods of manufacture are disclosed in which dual work function metal gate electrodes are formed from a single metal layer by doping the metal layer with carbon and/or fluorine.
Abstract:
Provided is a method for fabricating a semiconductor device. The method includes forming an interlayer insulating layer on a substrate, the interlayer insulating layer including a first trench; forming a high-k dielectric layer in the first trench; successively forming a diffusion layer and a blocking layer on the high-k dielectric layer; subsequently performing annealing; after the annealing, successively removing the blocking layer and the diffusion layer; forming a first barrier layer on the high-k dielectric layer; successively forming a work function adjustment layer and a gate conductor on the first barrier layer; and forming a capping layer on the gate conductor.