摘要:
The present invention relates to a method for the separation of C4 olefins and C4 paraffins from a C4 hydrocarbon mixed gas including butene-1, trans-2- butene, cis-2-butene, normal butane, isobutane, etc. The method of the present invention produces C4 olefins with high purity by introducing a gaseous C4 mixture into the adsorption tower loaded with adsorbent selectively adsorbing olefins to adsorb C4 olefins and to discharge C4 paraffins to the outlet of the tower, desorbing C4 olefins adsorbed on the adsorption tower with a desorbent C5 hydrocarbon, C6 hydrocarbon, etc.), and then separating the C4 olefin and the desorbent by a distillation process.
摘要:
The present invention relates to a hybrid process comprising an adsorption process and a distillation process for the separation of butene-1 from a C4 hydrocarbon mixture gas including butene-1, trans-2-butene, cis-2-butene, normal butane, isobutane, etc. The above hybrid process comprises introducing a gaseous C4 mixture into the adsorption tower loaded with adsorbents which adsorb olefins selectively to discharge C4 paraffins to the outlet of the tower, desorbing C4 olefins selectively adsorbed in the adsorption tower to produce high purity C4 olefins mixture gas in which isobutane and normal butane was removed, and separating the high C4 olefins mixture gas (a mixture of butene-1, trans-2-butene, cis-2-butene, and a trace amount of C4 paraffins) via distillation to obtain high purity butene-1 including a trace amount of isobutane in the top of the distillation tower and obtain a mixture gas including trans-2-butene, cis-2-butene and a trace amount of normal butane in the bottom of the tower.
摘要:
The present invention relates to a hybrid process comprising an adsorption process and a distillation process for the separation of butene-1 from a C4 hydrocarbon mixture gas including butene-1, trans-2-butene, cis-2-butene, normal butane, isobutane, etc. The above hybrid process comprises introducing a gaseous C4 mixture into the adsorption tower loaded with adsorbents which adsorb olefins selectively to discharge C4 paraffins to the outlet of the tower, desorbing C4 olefins selectively adsorbed in the adsorption tower to produce high purity C4 olefins mixture gas in which isobutane and normal butane was removed, and separating the high C4 olefins mixture gas (a mixture of butene-1, trans-2-butene, cis-2-butene, and a trace amount of C4 paraffins) via distillation to obtain high purity butene-1 including a trace amount of isobutane in the top of the distillation tower and obtain a mixture gas including trans-2-butene, cis-2-butene and a trace amount of normal butane in the bottom of the tower.
摘要:
The present invention relates to a method and an apparatus for the separation of C4 olefins (butene-1, trans-2-butene, cis-2-butene, etc.) and C4 paraffins (normal butane, isobutane, etc.) from a C4 hydrocarbon mixed gas including butene-1, trans-2-butene, cis-2-butene, normal butane, isobutane, etc. The method of the present invention produces C4 olefins with high purity by introducing a gaseous C4 mixture into the adsorption tower loaded with adsorbent selectively adsorbing olefins to adsorb C4 olefins and to discharge C4 paraffins to the outlet of the tower, desorbing C4 olefins adsorbed on the adsorption tower with a desorbent (C5 hydrocarbon, C6 hydrocarbon, etc.), and then separating the C4 olefin and the desorbent by a distillation process. The apparatus of the present invention is composed of several adsorption towers loaded with an adsorbent which selectively adsorb olefins and two distillation towers for the separation of the mixture gases of olefins/desorbents and paraffins/desorbents respectively, The basic operating process of the adsorption tower comprises a adsorption step of selectively adsorbing C4 olefin from the feeding mixture, a C4 olefin rinse step of removing a small amount of C4 paraffins adsorbed together with C4 olefins, and a desorption step of desorbing C4 olefins by using a desorbent, and further comprises a pressure equalization step, a cocurrent depressurization step, and a accumulation pressure step in order to increase the yield and concentration of olefins depending on the operation pressure of the adsorption tower. The desorbent discharged from the process together with olefins or paraffins is separated in the distillation tower and then recycled.
摘要:
A high purity isobutane adsorption separation and purification apparatus is provided including a pressure regulator which regulates the pressure of an isobutane-containing gas; the at least one adsorption bed packed with zeolite 5A and carbon molecular sieve arranged downstream of and operatively associated with the pressure regulator; a flow control valve disposed between the pressure regulator and the at least one adsorption bed; a surge tank operatively associated with and for receiving a purified isobutane product from the at least one adsorption bed; a vacuum pump operatively associated with and for removal of impurities from the at least one adsorption bed; and valves disposed between the pressure regulator and the at least one adsorption bed, between the at least one adsorption bed and the surge tank, and between the at least one adsorption bed and the vacuum pump. An adsorptive separation and isobutane purification process is also provided which may be used with the apparatus of the invention.
摘要:
The present invention relates to a method in which a catalytic reaction is used in order to produce hydrocarbons from renewable starting material derived from biological organisms such as vegetable lipids, animal lipids, and lipids extracted from macroalgae and microalgae, and more specifically relates to a method for selectively making a hydrocarbon, which is suitable for making gasoline or diesel, by removing the oxygen contained in the starting material without consuming hydrogen. In the present invention, the production takes place by bringing the starting material into contact with hydrotalcite, which constitutes a catalyst, thereby removing oxygen via a decarboxylation or decarbonylation reaction; and the starting material is one or more such material selected from triglycerides, fatty acids, and fatty acid derivatives obtained from a renewable source of supply originating from a biological organism.
摘要:
The present invention relates to a method in which a catalytic reaction is used in order to produce hydrocarbons from renewable starting material derived from biological organisms such as vegetable lipids, animal lipids, and lipids extracted from macroalgae and microalgae, and more specifically relates to a method for selectively making a hydrocarbon, which is suitable for making gasoline or diesel, by removing the oxygen contained in the starting material without consuming hydrogen. In the present invention, the production takes place by bringing the starting material into contact with hydrotalcite, which constitutes a catalyst, thereby removing oxygen via a decarboxylation or decarbonylation reaction; and the starting material is one or more such material selected from triglycerides, fatty acids, and fatty acid derivatives obtained from a renewable source of supply originating from a biological organism.
摘要:
Adsorbents useful in the selective adsorption of unsaturated hydrocarbons, the manufacture of the adsorbents, and processes for the separation of unsaturated hydrocarbons using the adsorbents.
摘要:
A method for recovering argon and hydrogen simultaneously from a feed mixture comprising argon, hydrogen, methane, nitrogen, ammonia, and moisture by passing a two stage adsorption separation (PSA). The feed gas including 4-6% hydrogen is sent to the first stage PSA to obtain a product hydrogen during the first period of adsorption step, and to obtain an intermediate product of argon and hydrogen mixture during the next period of adsorption step. The adsorbed gases are evacuated and sent to fuel gas. The intermediate product argon and hydrogen mixture is sent to the second stage adsorption bed. The effluent of adsorption step is recovered as another product hydrogen. After the adsorption step, the second stage adsorber is undergone concurrent blowdown, pressure equalization, argon recovery, argon purge, desorption production of argon, pressure equalization, pressurization with product hydrogen. Through such cyclic operation of two-stage PSA, high purity argon and hydrogen are recovered simultaneously.