摘要:
A method, system, and apparatus to enable at least one active core in a multi-core processor to operate at a higher operating point while at least one other core in the multi-core processor is in an idle state. When the idle core exits the idle state, the operating point may be reduced after a hysteresis timer has expired.
摘要:
A method, system, and apparatus to enable at least one active core in a multi-core processor to operate at a higher operating point while at least one other core in the multi-core processor is in an idle state. When the idle core exits the idle state, the operating point may be reduced after a hysteresis timer has expired.
摘要:
With the progress toward multi-core processors, each core is can not readily ascertain the status of the other dies with respect to an idle or active status. A proposal for utilizing an interface to transmit core status among multiple cores in a multi-die microprocessor is discussed. Consequently, this facilitates thermal management by allowing an optimal setting for setting performance and frequency based on utilizing each core status.
摘要:
With the progress toward multi-core processors, each core is can not readily ascertain the status of the other dies with respect to an idle or active status. A proposal for utilizing an interface to transmit core status among multiple cores in a multi-die microprocessor is discussed. Consequently, this facilitates thermal management by allowing an optimal setting for setting performance and frequency based on utilizing each core status.
摘要:
With the progress toward multi-core processors, each core is can not readily ascertain the status of the other dies with respect to an idle or active status. A proposal for utilizing an interface to transmit core status among multiple cores in a multi-die microprocessor is discussed. Consequently, this facilitates thermal management by allowing an optimal setting for setting performance and frequency based on utilizing each core status.
摘要:
With the progress toward multi-core processors, each core is can not readily ascertain the status of the other dies with respect to an idle or active status. A proposal for utilizing an interface to transmit core status among multiple cores in a multi-die microprocessor is discussed. Consequently, this facilitates thermal management by allowing an optimal setting for setting performance and frequency based on utilizing each core status.
摘要:
With the progress toward multi-core processors, each core is can not readily ascertain the status of the other dies with respect to an idle or active status. A proposal for utilizing an interface to transmit core status among multiple cores in a multi-die microprocessor is discussed. Consequently, this facilitates thermal management by allowing an optimal setting for setting performance and frequency based on utilizing each core status.
摘要:
With the progress toward multi-core processors, each core is can not readily ascertain the status of the other dies with respect to an idle or active status. A proposal for utilizing an interface to transmit core status among multiple cores in a multi-die microprocessor is discussed. Consequently, this facilitates thermal management by allowing an optimal setting for setting performance and frequency based on utilizing each core status.
摘要:
With the progress toward multi-core processors, each core is can not readily ascertain the status of the other dies with respect to an idle or active status. A proposal for utilizing an interface to transmit core status among multiple cores in a multi-die microprocessor is discussed. Consequently, this facilitates thermal management by allowing an optimal setting for setting performance and frequency based on utilizing each core status.
摘要:
With the progress toward multi-core processors, each core is can not readily ascertain the status of the other dies with respect to an idle or active status. A proposal for utilizing an interface to transmit core status among multiple cores in a multi-die microprocessor is discussed. Consequently, this facilitates thermal management by allowing an optimal setting for setting performance and frequency based on utilizing each core status.