摘要:
Disclosed herein is an electrical component comprising a segment having a diameter in the range of about 1 micrometers to about 10 cm, the segment comprising a plurality of non-metallic, resistive fibers in a non-metallic binder. The segment is precisely trimmed to impart to the segment an electrical resistance within 1% of the desired resistance value. A manufacturing system and methods of manufacturing components having precise specifications also are disclosed.
摘要:
Exemplary embodiments provide composite materials, methods for making and processing these materials, and systems for using the composite materials. The disclosed composite material (or composite member) can include fiber-like and/or particulate materials incorporated within a binder polymer. For example, the composite member can include fibril-shaped, semi-conductive elements that are contained in a suitable binder polymer to achieve a particular resistance value, wherein the fibrils can be integrated and interlinked in a manner as to create an array of resistive elements that precisely define and control current flows through the related device. The composite member can therefore have resistive characteristics and, none or neglectablely low amount of capacitive or inductive characteristics. The composite member can be used in electric test market, e.g., as high performance, dynamic probes/sensors for very frequency and/or complex mixed-frequency signals.
摘要:
Exemplary embodiments provide precision resistive composite members and methods for manufacturing and using them. The resistive composite member can have controllable dimensions, geometric shapes, mechanical properties and resistance values. The resistive composite member can be used for high-performance sensors or instrument probes that require, for example, high contact pressure, ultra-high frequency, and/or enable state-of-the-art digital signal transmission, characterization, or measurement. The resistive composite member can include one or more “twisted-fiber-tow” or one or more arrays of “twisted-fiber-tow” contained in a suitable non-metallic or essentially non-metallic binder material. The “twisted-fiber-tow” can further include a number of fibers that are twisted individually and/or in bundles in order to control the mechanical properties and fine-tune the resistance of the resistive composite member and thus to customize the high-performance instrument probes.
摘要:
Exemplary embodiments provide precision resistive composite members and methods for manufacturing and using them. The resistive composite member can have controllable dimensions, geometric shapes, mechanical properties and resistance values. The resistive composite member can be used for high-performance sensors or instrument probes that require, for example, high contact pressure, ultra-high frequency, and/or enable state-of-the-art digital signal transmission, characterization, or measurement. The resistive composite member can include one or more “twisted-fiber-tow” or one or more arrays of “twisted-fiber-tow” contained in a suitable non-metallic or essentially non-metallic binder material. The “twisted-fiber-tow” can further include a number of fibers that are twisted individually and/or in bundles in order to control the mechanical properties and fine-tune the resistance of the resistive composite member and thus to customize the high-performance instrument probes.
摘要:
Disclosed herein is an electrical component comprising a segment having a diameter in the range of about 1 micrometers to about 10 cm, the segment comprising a plurality of non-metallic, resistive fibers in a non-metallic binder. The segment is precisely trimmed to impart to the segment an electrical resistance within 1% of the desired resistance value. A manufacturing system and methods of manufacturing components having precise specifications also are disclosed.
摘要:
A fluid jet based micromachining device and method include a workpiece, and fluid jets directing synchronized forces at the workpiece so as to converge forces at a dynamic contact zone on the workpiece and provide mechanical support to the workpiece during periods of contact with the fluid jets.
摘要:
Disclosed herein is an electrical component comprising a segment having a diameter in the range of about 1 micrometers to about 10 cm, the segment comprising a plurality of non-metallic, resistive fibers in a non-metallic binder. The segment is precisely trimmed to impart to the segment an electrical resistance within 1% of the desired resistance value. A manufacturing system and methods of manufacturing components having precise specifications also are disclosed.
摘要:
Disclosed herein is a component comprising a substantially homogeneous composition of at least one polymer selected from the group consisting of epoxies, acetals, polyesters, non-ionic rubbers, non-ionic polyurethanes, polyether sulfones, polyether ether ketones, polyether imides, polystyrenes, polyethylene terephthalates, polyamides, polyimides, polyvinylchlorides, polyphenylene oxides, polycarbonates, acrylonitrile-butadiene-styrene terpolymers, silicones, fluropolymers, and polyolefins, a filler, and a metal plating catalyst. A method of making a component also is described comprising obtaining a polymeric material, a liquid, a filler and a metal plating catalyst; combining the metal plating catalyst with the polymeric material, liquid, and filler to form a substantially homogeneous mixture; and evaporating and/or curing the mixture to form a solidified component. The method is useful for making small, precisely engineered, electronic components without requiring the use of caustic solutions or complex equipment.
摘要:
Disclosed herein is an electrical component comprising a segment having a diameter in the range of about 1 micrometers to about 10 cm, the segment comprising a plurality of non-metallic, resistive fibers in a non-metallic binder. The segment is precisely trimmed to impart to the segment an electrical resistance within 1% of the desired resistance value. A manufacturing system and methods of manufacturing components having precise specifications also are disclosed.
摘要:
Exemplary embodiments provide composite materials, methods for making and processing these materials, and systems for using the composite materials. The disclosed composite material (or composite member) can include fiber-like and/or particulate materials incorporated within a binder polymer. For example, the composite member can include fibril-shaped, semi-conductive elements that are contained in a suitable binder polymer to achieve a particular resistance value, wherein the fibrils can be integrated and interlinked in a manner as to create an array of resistive elements that precisely define and control current flows through the related device. The composite member can therefore have resistive characteristics and, none or neglectablely low amount of capacitive or inductive characteristics. The composite member can be used in electric test market, e.g., as high performance, dynamic probes/sensors for very frequency and/or complex mixed-frequency signals.