摘要:
Transdermal transport of molecules during sonophoresis (delivery or extraction) can be further enhanced by application of an electric field, for example, electroporation or iontophoresis. In a preferred embodiment the ultrasound is low frequency ultrasound which induces cavitation of the lipid layers of the stratum corneum (SC). This method provides higher drug transdermal fluxes, allows rapid control of transdermal fluxes, and allows drug delivery or analyte extraction at lower ultrasound intensities than when ultrasound is applied in the absence of an electric field.
摘要:
Methods for enhanced transdermal transport wherein the application of ultrasound is required only once for repeated or sustained transdermal extraction or delivery, over a period of time, rather than prior to each extraction or delivery. The method is applicable to analyte extraction, as well as for drug delivery. The method involves the initial application of an amount of low frequency ultrasound effective to permeabilize the skin or membrane followed by analyte extraction or drug delivery over a period of time. The initial application of ultrasound is effective to permeabilize the skin or membrane for at least about 30 minutes, preferably at least one to two hours, and more preferably up to four to ten hours. The ultrasound is preferably low frequency ultrasound, less than 2.5 MHz, more preferably less than 1 MHz. The transdermal transport can be enhanced by the application of a secondary driving force such as suction, osmotic pressure gradient, concentration gradient, iontophoresis, electroporation, magnetic field, additional ultrasound, or mechanical pressure.
摘要:
Transdermal transport of molecules during sonophoresis (delivery or extraction) can be further enhanced by providing chemical enhancers which increase the solubility of the compound to be transported and/or lipid bilayer solubility, and/or additional driving forces for transport, such as mechanical or osmotic pressure, magnetic fields, electroporation or iontophoresis. In a preferred embodiment the ultrasound is low frequency ultrasound which induces cavitation of the lipid layers of the stratum corneum (SC). This method provides higher drug transdermal fluxes, allows rapid control of transdermal fluxes, and allows drug delivery or analyte extraction at lower ultrasound intensities and other forces or concentrations than that required if each means of enhancing transport is used individually.
摘要:
Applications of low-frequency (20 KHz) ultrasound enhances transdermal transport of high-molecular weight proteins. This method includes a simultaneous application of ultrasound and protein on the skin surface in order to deliver therapeutic doses of proteins across the skin. Examples demonstrate in vitro and in vivo administration of insulin (molecular weight 6,000 D), and in vitro administration of gamma interferon (molecular weight 17,000 D), and erythropoeitin (molecular weight 48,000 D).
摘要:
A substrate having a surface with reversibly switchable properties. The surface comprises a nanolayer of a material that switches from a first conformation state to a second conformation state when an external stimulus is applied. When the nanolayer is in the first conformation state, the surface is characterized by a first property, and when the nanolayer is in the second conformation state, the surface is characterized by a second property.
摘要:
A substrate having a surface with reversibly switchable properties. The surface comprises a nanolayer of a material that switches from a first conformation state to a second conformation state when an external stimulus is applied. When the nanolayer is in the first conformation state, the surface is characterized by a first property, and when the nanolayer is in the second conformation state, the surface is characterized by a second property.
摘要:
Applications of low-frequency (20 KHz) ultrasound enhances transdermal transport of high-molecular weight proteins. This method includes a simultaneous application of ultrasound and protein on the skin surface in order to deliver therapeutic doses of proteins across the skin. Examples demonstrate in vitro and in vivo administration of insulin (molecular weight 6,000 D), and in vitro administration of gamma interferon (molecular weight 17,000 D), and erythropoeitin (molecular weight 48,000 D).
摘要:
Applications of low-frequency (20 KHz) ultrasound enhances transdermal transport of high-molecular weight proteins. This method includes a simultaneous application of ultrasound and protein on the skin surface in order to deliver therapeutic doses of proteins across the skin. Examples demonstrate in vitro and in vivo administration of insulin (molecular weight 6,000 D), and in vitro administration of gamma interferon (molecular weight 17,000 D), and erythropoeitin (molecular weight 48,000 D).
摘要:
A method of enhancing the permeability of the skin or mucosa to an analyte for diagnostic purposed is described utilizing ultrasound or ultrasound plus a chemical enhancer. If desired the ultrasound may be modulated by means of frequency modulation, amplitude modulation, phase modulation and/or combinations thereof. A frequency modulation from low to high develops a local pressure gradient directed out of the body, thus permitting analytes in the body to traverse the skin and be collected and measured outside the body. The concentration of an analyte in the body is preferably determined by enhancing the permeability of the skin or other biological membrane optionally with a chemical enhancer, applying ultrasound optionally at a modulated frequency, amplitude, phase, or combinations thereof that further induces a local pressure gradient out of the body, collecting the analyte, and utilizing the analyte collection data calculating the concentration of the analyte in the body.
摘要:
A method using ultrasound for enhancing and controlling transbuccal permeation of a molecule, including drugs, antigens, vitamins, inorganic and organic compounds, and various combinations of these substances, through the buccal membranes and into the circulatory system. The frequency and intensity of ultrasonic energy which is applied, and the length of time of exposure are determined according to the location and nature of the buccal membrane and the substance to be infused. Levels of the infused molecules in the blood and urine measured over a period of time are initially used to determine under what conditions optimum transfer occurs. In a variation of the method, whereby ultrasound is applied directly to the compound and site where the compound is to be infused through the buccal membranes, the compound can be placed within a delivery device. In one variation, the ultrasound can control release both by direct interaction with the compound and membrane but also with the delivery device. In another variation, the delivery device helps to modulate release and infusion rate. The compound can also be administered in combination with a chemical agent which alters permeability of the buccal membrane, thereby aiding infusion of the compound into the circulatory system.