摘要:
Transdermal transport of molecules during sonophoresis (delivery or extraction) can be further enhanced by application of an electric field, for example, electroporation or iontophoresis. In a preferred embodiment the ultrasound is low frequency ultrasound which induces cavitation of the lipid layers of the stratum corneum (SC). This method provides higher drug transdermal fluxes, allows rapid control of transdermal fluxes, and allows drug delivery or analyte extraction at lower ultrasound intensities than when ultrasound is applied in the absence of an electric field.
摘要:
Methods for enhanced transdermal transport wherein the application of ultrasound is required only once for repeated or sustained transdermal extraction or delivery, over a period of time, rather than prior to each extraction or delivery. The method is applicable to analyte extraction, as well as for drug delivery. The method involves the initial application of an amount of low frequency ultrasound effective to permeabilize the skin or membrane followed by analyte extraction or drug delivery over a period of time. The initial application of ultrasound is effective to permeabilize the skin or membrane for at least about 30 minutes, preferably at least one to two hours, and more preferably up to four to ten hours. The ultrasound is preferably low frequency ultrasound, less than 2.5 MHz, more preferably less than 1 MHz. The transdermal transport can be enhanced by the application of a secondary driving force such as suction, osmotic pressure gradient, concentration gradient, iontophoresis, electroporation, magnetic field, additional ultrasound, or mechanical pressure.
摘要:
Transdermal transport of molecules during sonophoresis (delivery or extraction) can be further enhanced by providing chemical enhancers which increase the solubility of the compound to be transported and/or lipid bilayer solubility, and/or additional driving forces for transport, such as mechanical or osmotic pressure, magnetic fields, electroporation or iontophoresis. In a preferred embodiment the ultrasound is low frequency ultrasound which induces cavitation of the lipid layers of the stratum corneum (SC). This method provides higher drug transdermal fluxes, allows rapid control of transdermal fluxes, and allows drug delivery or analyte extraction at lower ultrasound intensities and other forces or concentrations than that required if each means of enhancing transport is used individually.
摘要:
A method of modifying epidermis for transport of a material by electroporation includes applying to epidermis an agent that, upon entry into the epidermis, will modify the epidermis to thereby cause and altered rate of transport of a material across the epidermis. Typically, the altered rate will be an increased rate of transport. The epidermis is electroporated, whereby at least a portion of the modifying agent enters the electroporated epidermis, thereby modifying the epidermis to cause an altered rate of transport of a material across the epidermis. In another embodiment, the modifying agent can modify the epidermis to enable measurement and/or monitoring of physiological conditions or change within or beneath the epidermis. The modifying agents can also be employed to facilitate discharge of fluids from within an organism, such as by providing pathways for discharge of fluids from a tumor. Examples of modifying agents include: oxidizing agents; reducing agents; particles, such as optical indicator beads or beads that include drugs to be released into tissue; electrically-charged particles or molecules; etc. Materials that can be transported by the method of the invention include, for example, proteins, nucleic acids, electrically charged molecules or particles, microorganisms suitable for immunization, etc. Also, tissues other than skin can be employed in the method of the invention.
摘要:
A method for delivering a nucleotide into an organism includes applying a composition which includes a nucleotide component to epidermis of the organism. The epidermis is electroporated, whereby at least a portion of the composition enters or passes across the epidermis, thereby delivering the nucleotide into the organism. An example of a suitable nucleotide which can be delivered by the method of the invention includes antisense oligodeoxynucleotides for treatment of melanomas.
摘要:
A method is disclosed for treating tissue in response to a stimulus generated by the tissue. In one embodiment, the method transdermally treats an organism in response to a stimulus. In this embodiment, the medication is applied to epidermis of the organism, and the epidermis is electroporated in response to a stimulus, whereby the medication passes through the epidermis at a rate sufficient to alter the stimulus, thereby transdermally treating the organism. In another embodiment, the method measures a blood component content of blood. A portion of epidermis is electroporated to cause an aqueous fluid to be directed through an electroporated epidermis to a surface of the epidermis. Thereafter, the blood component content of the aqueous fluid is measured for correlation with a known aqueous fluid blood component content associated with a known concentration of blood component in the blood. The blood component concentration of the blood can thereby be measured. In still another embodiment, the method includes directing a medication to the tissue which can alter the stimulus when the tissue is electroporated, and electroporating the tissue in response to a stimulus, whereby the medication passes through the tissue in an amount sufficient to alter the stimulus, thereby treating the organism.
摘要:
A method is disclosed for treating tissue in response to a stimulus generated by the tissue. In one embodiment, the method transdermally treats an organism in response to a stimulus. In this embodiment, the medication is applied to epidermis of the organism, and the epidermis is electroporated in response to a stimulus, whereby the medication passes through the epidermis at a rate sufficient to alter the stimulus, thereby transdermally treating the organism. In another embodiment, the method measures a blood component content of blood. A portion of epidermis is electroporated to cause an aqueous fluid to be directed through an electroporated epidermis to a surface of the epidermis. Thereafter, the blood component content of the aqueous fluid is measured for correlation with a known aqueous fluid blood component content associated with a known concentration of blood component in the blood. The blood component concentration of the blood can thereby be measured. In still another embodiment, the method includes directing a medication to the tissue which can alter the stimulus when the tissue is electroporated, and electroporating the tissue in response to a stimulus, whereby the medication passes through the tissue in an amount sufficient to alter the stimulus, thereby treating the organism.
摘要:
Applications of low-frequency (20 KHz) ultrasound enhances transdermal transport of high-molecular weight proteins. This method includes a simultaneous application of ultrasound and protein on the skin surface in order to deliver therapeutic doses of proteins across the skin. Examples demonstrate in vitro and in vivo administration of insulin (molecular weight 6,000 D), and in vitro administration of gamma interferon (molecular weight 17,000 D), and erythropoeitin (molecular weight 48,000 D).
摘要:
A substrate having a surface with reversibly switchable properties. The surface comprises a nanolayer of a material that switches from a first conformation state to a second conformation state when an external stimulus is applied. When the nanolayer is in the first conformation state, the surface is characterized by a first property, and when the nanolayer is in the second conformation state, the surface is characterized by a second property.
摘要:
A substrate having a surface with reversibly switchable properties. The surface comprises a nanolayer of a material that switches from a first conformation state to a second conformation state when an external stimulus is applied. When the nanolayer is in the first conformation state, the surface is characterized by a first property, and when the nanolayer is in the second conformation state, the surface is characterized by a second property.