摘要:
A semiconductor memory device and a method for forming the same. The method includes forming an insulating layer on a semiconductor substrate having a conductive region, forming a contact hole that exposes the conductive region by etching the insulating layer, forming a barrier metal layer that covers a sidewall and a bottom of the contact hole, and forming a contact plug in the contact hole by interposing the barrier metal layer therebetween. An etching process may be preformed that recesses the barrier metal layer and the contact plug in such a manner that a top surface of the contact plug protrudes upward beyond a top surface of the barrier metal layer. A capping plug may be formed covering the recessed barrier metal layer and the recessed contact plug. A capacitor may be formed on the capping plug.
摘要:
A ferroelectric memory device may include a substrate, an interlayer insulating layer on the semiconductor substrate, a contact plug penetrating the interlayer insulating layer, the contact plug being formed of a sequentially stacked metal plug and buffer plug, a conductive protection pattern covering the contact plug, the conductive protection pattern being a conductive oxide layer, a lower electrode, a ferroelectric pattern, and an upper electrode sequentially stacked on the conductive protection pattern, and an insulating protection layer covering the sequentially stacked lower electrode, ferroelectric pattern, and upper electrode.
摘要:
A method of forming a ferroelectric random access memory includes sequentially forming a conductive pattern, an etch-stop layer, a ferroelectric capacitor and an interlayer dielectric on a semiconductor substrate, which includes a first region and a second region. The ferroelectric capacitor is formed on the first region and the conductive pattern is formed on the second region. The interlayer dielectric is patterned to simultaneously form a first opening to expose a top surface of the ferroelectric capacitor and a second opening to expose a top surface of the etch-stop layer. The patterned interlayer dielectric is annealed in an ambient atmosphere, including oxygen atoms. The etch-stop layer exposed through the second opening is etched to expose a top surface of the conductive pattern. First and second top plugs are formed to connect to the ferroelectric capacitor and the conductive pattern through the first and second openings, respectively.
摘要:
An embodiment of the FeRAM includes a ferroelectric capacitor including a bottom electrode, a ferroelectric layer, and a top electrode. Strontium ruthenium oxide is formed between the bottom electrode and the ferroelectric layer and between the ferroelectric layer and the top electrode. A diffusion barrier layer including strontium ruthenium oxide and iridium is formed between the top electrode and a direct cell contact plug coupled to a plate line interconnecting top electrodes of ferroelectric capacitors. Thus, diffusion of nitrogen or metallic materials produced in subsequent processes is suppressed to prevent degradation of the ferroelectric layer.
摘要:
An embodiment of the FeRAM includes a ferroelectric capacitor including a bottom electrode, a ferroelectric layer, and a top electrode. Strontium ruthenium oxide is formed between the bottom electrode and the ferroelectric layer and between the ferroelectric layer and the top electrode. A diffusion barrier layer including strontium ruthenium oxide and iridium is formed between the top electrode and a direct cell contact plug coupled to a plate line interconnecting top electrodes of ferroelectric capacitors. Thus, diffusion of nitrogen or metallic materials produced in subsequent processes is suppressed to prevent degradation of the ferroelectric layer.
摘要:
For forming stacked capacitors, an opening is formed through at least one semiconductor material. A lower electrode material is patterned within the opening to form a plurality of lower electrodes within the opening. The stacked capacitors are formed with the lower electrodes within the opening by depositing a capacitor dielectric and an upper electrode within the opening. With such a relatively large opening, a capacitor dielectric of the stacked capacitors is deposited with a large thickness for improving reliability of the stacked capacitors.
摘要:
A semiconductor device having an MIM capacitor and a method of forming the same are provided. A lower electrode includes a plate electrode and a sidewall electrode. The plate electrode is formed by a patterning process preferably including a plasma anisotropic etching. The sidewall electrode is formed like a spacer on an inner sidewall of an opening exposing the plate electrode by a plasma entire surface anisotropic etching.
摘要:
In a node structure under a capacitor in a ferroelectric random access memory device and a method of forming the same, top surfaces of the node structures are disposed at substantially the same level as a top surface of an interlayer insulating layer surrounding the node structures, and thus crystal growth of a ferroelectric in the capacitor can be stabilized. To this end, a node insulating pattern is formed on a semiconductor substrate. A node defining pattern surrounding the node insulating pattern is disposed under the node insulating pattern. A node conductive pattern is disposed between the node defining pattern and the node insulating pattern.
摘要:
A memory device includes one or more layers of parallel strings of ferroelectric gate transistors on a substrate, each layer of parallel strings including a plurality of parallel line-shaped active regions and a plurality of word lines extending in parallel transversely across the active regions and disposed on ferroelectric patterns on the active regions. A string select gate line may extend transversely across the active regions in parallel with the word lines. A ground select gate line may extend transversely across the active regions in parallel with the word lines.
摘要:
For forming stacked capacitors, an opening is formed through at least one semiconductor material. A lower electrode material is patterned within the opening to form a plurality of lower electrodes within the opening. The stacked capacitors are formed with the lower electrodes within the opening by depositing a capacitor dielectric and an upper electrode within the opening. With such a relatively large opening, a capacitor dielectric of the stacked capacitors is deposited with a large thickness for improving reliability of the stacked capacitors.