摘要:
A film formation system 10 has a processing chamber 15 bounded by sidewalls 18 and a top cover 11. In one embodiment, the top cover 11 has a reflective surface 13 for reflecting radiant energy back onto a substrate 19, pyrometers 405 for measuring the temperature of the substrate 19 across a number of zones, and at least one emissometer 410 for measuring the actual emissivity of the substrate 19. In another embodiment, a radiant heating system 313 is disposed under the substrate support 16. The temperature of the substrate 19 is obtained from pyrometric data from the pyrometers 405, and the emissometer 410.
摘要:
A film formation system 10 includes a processing chamber 15 bounded by sidewalls 18 and a top cover 11. In one embodiment, a susceptor 16 is rotatably disposed in the system 10, and overlaps with a first peripheral member 205 disposed around the sidewalls 18. A radiant heating system 313 is disposed under the susceptor 305 to heat the substrate 19. In another embodiment, the top cover 11 has equally spaced pyrometers 58 for measuring the temperature of the substrate 19 across a number of zones. The temperature of the substrate 19 is obtained from pyrometric data from the pyrometers 58.
摘要:
A film formation system 10 includes a processing chamber 15 bounded by sidewalls 18 and a top cover 11. In one embodiment, a susceptor 16 is rotatably disposed in the system 10, and overlaps with a first peripheral member 205 disposed around the sidewalls 18. A radiant heating system 313 is disposed under the susceptor 305 to heat the substrate 19. In another embodiment, the top cover 11 has equally spaced pyrometers 58 for measuring the temperature of the substrate 19 across a number of zones. The temperature of the substrate 19 is obtained from pyrometric data from the pyrometers 58.
摘要:
A film formation system 10 has a processing chamber 15 bounded by sidewalls 18 and a top cover 11. In one embodiment, the top cover 11 has a reflective surface 13 for reflecting radiant energy back onto a substrate 19, pyrometers 405 for measuring the temperature of the substrate 19 across a number of zones, and at least one emissometer 410 for measuring the actual emissivity of the substrate 19. In another embodiment, a radiant heating system 313 is disposed under the substrate support 16. The temperature of the substrate 19 is obtained from pyrometric data from the pyrometers 405, and the emissometer 410.
摘要:
According to one aspect of the invention, an apparatus for reducing auto-doping of the front side of a substrate and reducing defects on the backside of the substrate during an epitaxial deposition process for forming an epitaxial layer on the front side of the substrate comprising: a means for forming a wafer gap region between the backside of the substrate and a susceptor plate, having an adjustable thickness; a means for ventilating auto-dopants out of the wafer gap region with a flow of inert gas, while inhibiting or prohibiting the flow of inert gas over the front side of the substrate; and a means for flowing reactant gases over the surface of the front side of the substrate, while inhibiting or prohibiting the flow of reactant gases near the surface of the backside of the substrate.
摘要:
The present invention provides methods and apparatus for processing semiconductor substrates. Particularly, the present invention provides a modular processing cell to be used in a cluster tool. The modular semiconductor processing cell of the present invention comprises a chamber having an inject cap, a gas panel module configured to supply one or more processing gas to the chamber through the inject cap, wherein the gas panel module is position adjacent the inject cap. The processing cell further comprises a lamp module positioned below the chamber. The lamp module comprises a plurality of vertically oriented lamps.
摘要:
According to one aspect of the invention, an apparatus for reducing auto-doping of the front side of a substrate and reducing defects on the backside of the substrate during an epitaxial deposition process for forming an epitaxial layer on the front side of the substrate comprising: a means for forming a wafer gap region between the backside of the substrate and a susceptor plate, having an adjustable thickness; a means for ventilating auto-dopants out of the wafer gap region with a flow of inert gas, while inhibiting or prohibiting the flow of inert gas over the front side of the substrate; and a means for flowing reactant gases over the surface of the front side of the substrate, while inhibiting or prohibiting the flow of reactant gases near the surface of the backside of the substrate.
摘要:
Disclosed are laser scribing systems for laser scribing semiconductor substrates with backside coatings. In particular these laser scribing systems laser scribe opto-electric semiconductor wafers with reflective backside coatings so as to avoid damage to the opto-electric device while maintaining efficient manufacturing. In more particular these laser scribing systems employ ultrafast pulsed lasers at wavelength in the visible region and below in multiple passes to remove the backside coatings and scribe the wafer.
摘要:
Disclosed are laser scribing systems for laser scribing semiconductor substrates with backside coatings. In particular these laser scribing systems laser scribe opto-electric semiconductor wafers with reflective backside coatings so as to avoid damage to the opto-electric device while maintaining efficient manufacturing. In more particular these laser scribing systems employ ultrafast pulsed lasers at wavelength in the visible region and below in multiple passes to remove the backside coatings and scribe the wafer.
摘要:
The present invention is a system and method for laser-assisted singulation of light emitting electronic devices manufactured on a substrate, having a processing surface and a depth extending from the processing surface. It includes providing a laser processing system having a picosecond laser having controllable parameters; controlling the laser parameters to form light pulses from the picosecond laser, to form a modified region having a depth which spans about 50% of the depth and substantially including the processing surface of the substrate and having a width less than about 5% of the region depth; and, singulating the substrate by applying mechanical stress to the substrate thereby cleaving the substrate into said light emitting electronic devices having sidewalls formed at least partially in cooperation with the linear modified regions.