摘要:
A deterioration determination device for an exhaust emission reduction device which is capable of accurately and rapidly determining deterioration of a NOx purifying catalyst. The deterioration determination device for the exhaust emission reduction device for determining deterioration of the NOx purifying catalyst includes an ECU. The ECU executes high NOx concentration control in deterioration determination, calculates a NOx supply amount based on upstream NOx concentration detected during execution of the high NOx concentration control, calculates a NOx slip amount based on downstream NOx concentration detected during execution of the high NOx concentration control, and determines the NOx purifying catalyst to be deteriorated when the condition of the NOx slip amount >a reference value is satisfied, in a case where the NOx supply amount> a reference value holds.
摘要:
A control system is disclosed that accelerates the rise in temperature of a catalyst provided in an exhaust system of an internal combustion engine. The system increases the intake air amount after the engine starts and retards the ignition timing according to a rotational speed of the engine. In this control system, a failure of the catalyst temperature rise acceleration control is diagnosed according to the engine rotational speed and/or a retard amount of the ignition timing during the execution of the catalyst temperature rise acceleration control. The above failure may also be diagnosed according to at least one of the ignition timing and the engine rotational speed when decreasing the intake air amount during the execution of the catalyst temperature rise acceleration control. The above failure may also be diagnosed according to a detected catalyst temperature and an estimated catalyst temperature.
摘要:
A system for controlling fuel vapors of an internal combustion engine having a fuel supply system including a fuel tank for supplying fuel to an air intake system such that an air-fuel mixture flows to a combustion chamber, including a canister purge mechanism for purging the stored fuel vapors into the air intake system of the engine through a purge line. A purged fuel amount supplied to the combustion chamber of the engine is calculated and a fuel injection amount to be supplied to the engine is determined based on the calculated purged fuel amount and a basic fuel inject-on amount. In the system, the purged fuel amount is calculated based on the estimated amount of the fuel vapors in response to a transport delay of the purged fuel vapors. The purged fuel amount is, on the other hand, calculated in response to the air/fuel ratio feedback correction coefficient and a learning control value ratio, thereby enhancing the accuracy in determining the correctional purged fuel amount and accordingly improving the accuracy in correcting the fuel injection amount by the determined correctional purged fuel amount.
摘要:
A fuel supply control system for an internal combustion engine. A load condition sensor detects a load condition of the engine, and an ECU increases the amount of fuel to be supplied to the engine when a predetermined high load condition of the engine is detected by the load condition sensor, and sets a delay time period from detection of the predetermined high load condition of the engine by the load condition sensor to execution of increase of the amount of fuel, according to operating conditions of the engine. A time period elapsed from the detection of the predetermined high load condition is counted. The set delay time period is corrected based on a ratio of the set delay time period to the counted time period and the load condition of the engine detected by the load condition sensor before the detection of said predetermined high load condition.
摘要:
A device for detecting abnormality of the fuel supply system of an internal combustion engine inhibits supply of evaporative fuel to the intake passage when the air-fuel ratio correction coefficient becomes smaller than a predetermined value, and thereafter determines that the fuel supply system is normal when the air-fuel ratio correction coefficient increases above the predetermined value as a result of the inhibition of the supply of the evaporative fuel. The supply of the evaporative fuel to the intake passage is resumed after the determination that the fuel supply system is normal has been made. Determination of abnormality of the fuel supply system is inhibited after resuming of the supply of the evaporative fuel until the engine enters a predetermined operating condition in which the air-fuel ratio correction coefficient has increased. The determination of abnormality of the fuel supply system is permitted to be resumed, based on the air-fuel ratio correction coefficient when the engine has entered the predetermined operating condition.
摘要:
An iron compound catalyst for inhibiting the generation of dioxin contains iron oxide particles, iron oxide hydroxide particles or mixed particles having a catalytic activity capable of converting not less than 15% of carbon monoxide into carbon dioxide when 2.8×10−4 mol of iron oxide particles obtained by heat-treating the iron compound catalyst in air at a temperature of 800° C. for 15 minutes, are instantaneously contacted with 6.1×10−7 mol of carbon monoxide at a temperature of 250° C. at a space velocity (SV) of 42,400 h−1 in an inert gas atmosphere using a pulse catalytic reactor, the iron oxide particles or the iron oxide hydroxide particles have an average particle size of 0.01 to 2.0 &mgr;m, a BET specific surface area of 0.2 to 200 m2/g, a phosphorus content of not more than 0.02% by weight, a sulfur content of not more than 0.6% by weight and a sodium content of not more than 0.5% by weight. This iron compound catalyst enables complete combustion of municipal solid waste and decomposition of dioxin precursors even at a low combustion temperature in intermittently operated incinerators such as mechanical batch incinerators or semi-continuous incinerators, and can inhibit dioxin generation of due to a memory effect upon low-temperature combustion at the start-up or shut-down of the incinerators, without large-scale incinerator renovation or plant and equipment investment.
摘要:
A control system is disclosed that accelerates the rise in temperature of a catalyst provided in an exhaust system of an internal combustion engine. The system increases the intake air amount after the engine starts and retards the ignition timing according to a rotational speed of the engine. In this control system, a failure of the catalyst temperature rise acceleration control is diagnosed according to the engine rotational speed and/or a retard amount of the ignition timing during the execution of the catalyst temperature rise acceleration control. The above failure may also be diagnosed according to at least one of the ignition timing and the engine rotational speed when decreasing the intake air amount during the execution of the catalyst temperature rise acceleration control. The above failure may also be diagnosed according to a detected catalyst temperature and an estimated catalyst temperature.
摘要:
A misfire state discrimination system of an internal combustion engine, which determines the occurrence of misfire under engine operating conditions that make misfire determination possible and counts the number of misfires to compare with a reference value. The misfire state of the engine is discriminated based on the result of comparison. In the system, when the engine operation moves from the conditions that makes the misfire determination possible, the count is saved and is counted up from the count when the engine operation returns to the condition. The saved count is also retained when the engine is stopped. Similarly, the number of combustion during which the determination of misfire occurrence is made is counted and the count is saved. This arrangement enables a rapid and accurate discrimination of the misfire state of the engine.
摘要:
When a leakage fault occurs in the evaporated fuel processing system of a fuel tank, a control system reliably prevents leakage of the evaporated fuel from the point where the leakage fault has occurred. The fuel tank and a canister are connected to each other via a charge passage having a bypass valve, and the canister and an intake passage of an engine are connected to each other via a purge passage having a purge control valve. When a leakage fault occurs in the fuel tank (or the charge passage upstream of the bypass valve), the bypass valve and the purge control valve are opened and an atmosphere release control valve provided on the canister, is closed. The closure of the atmosphere release control valve stops the negative intake pressure of the engine from being consumed by the intake of air through the atmosphere release control valve, and thus it is possible to efficiently prevent the evaporated fuel from leaking from the point where the leakage fault has occurred by effectively transmitting the negative intake pressure to the point where the leakage fault has occurred.
摘要:
An air-fuel ratio control system for an internal combustion engine has an exhaust gas component concentration sensor having a sensor element and arranged in the exhaust system of the engine, for detecting concentration of a predetermined component present in exhaust gases emitted from the engine. An ECU controls the air-fuel ratio of an air-fuel mixture supplied to the engine, based on results of comparison between an output value from the sensor and a predetermined reference value, and detects deterioration of the exhaust gas component concentration sensor, based on the output value from the sensor. Engine operating condition sensors detect operating conditions of the engine. It is determined whether or not the engine is in a predetermined engine operating condition in which the sensor element temperature of the exhaust gas component concentration sensor lowers, based on outputs from the engine operating condition sensors. Detection of deterioration of the sensor is inhibited over a predetermined time period after the engine leaves the predetermined operating condition.