摘要:
A buffer layer and a high-k metal oxide dielectric may be formed over a smooth silicon substrate. The substrate smoothness may reduce column growth of the high-k metal oxide gate dielectric. The surface of the substrate may be saturated with hydroxyl terminations prior to deposition.
摘要:
A buffer layer and a high-k metal oxide dielectric may be formed over a smooth silicon substrate. The substrate smoothness may reduce column growth of the high-k metal oxide gate dielectric. The surface of the substrate may be saturated with hydroxyl terminations prior to deposition.
摘要:
A method for making a semiconductor device is described. That method comprises forming a first dielectric layer on a substrate, a trench within the first dielectric layer, and a second dielectric layer on the substrate. The second dielectric layer has a first part that is formed in the trench and a second part. After a first metal layer with a first workfunction is formed on the first and second parts of the second dielectric layer, part of the first metal layer is converted into a second metal layer with a second workfunction.
摘要:
A metal layer is formed on a dielectric layer, which is formed on a substrate. After forming a masking layer on the metal layer, the exposed sides of the dielectric layer are covered with a polymer diffusion barrier.
摘要:
A semiconductor device and a method for forming it are described. The semoiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.
摘要:
A method for making a semiconductor device is described. That method comprises forming on a substrate a dielectric layer and a sacrificial structure that comprises a first layer and a second layer, such that the second layer is formed on the first layer and is wider than the first layer. After the sacrificial structure is removed to generate a trench, a metal gate electrode is formed within the trench.
摘要:
A metal carbide film may be etched in an etchant bath using sonication. The sonication may drive the reaction and, particularly, the gaseous byproducts in the form of carbon dioxide. Thus, the use of sonication invokes a favorable equilibrium to pattern metal carbide films, for example, for use as metal gate electrodes.
摘要:
A semiconductor device and a method for forming it are described. The semoiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.
摘要:
A nanotube transistor, such as a carbon nanotube transistor, may be formed with a top gate electrode and a spaced source and drain. Conduction along the transistor from source to drain is controlled by the gate electrode. Underlying the gate electrode are at least two nanotubes. In some embodiments, the substrate may act as a back gate.
摘要:
A semiconductor device and a method for forming it are described. The semiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.