摘要:
According to one embodiment, a nonvolatile variable resistance element includes a first electrode, a second electrode, a variable resistance layer, and a dielectric layer. The second electrode includes a metal element. The variable resistance layer is arranged between the first electrode and the second electrode. A resistance change is reversibly possible in the variable resistance layer according to move the metal element in and out. The dielectric layer is inserted between the second electrode and the variable resistance layer and has a diffusion coefficient of the metal element smaller than that of the variable resistance layer.
摘要:
A resistance random access memory device according to an embodiment includes a first electrode, a second electrode and a variable resistance film provided between the first electrode and the second electrode. The second electrode includes material selected from the group consisting of silver, copper, zinc, gold, titanium, nickel, cobalt, tantalum, aluminum, and bismuth, alloys thereof, and silicides thereof. The variable resistance film includes silicon oxynitride. The variable resistance film includes a first resistance change layer having a first nitrogen concentration and a second resistance change layer having a second nitrogen concentration lower than the first nitrogen concentration.
摘要:
According to one embodiment, a memory device includes a first electrode, a second electrode and a variable resistance layer. The second electrode includes a metal. The metal is more easily ionizable than a material of the first electrode. The variable resistance layer is disposed between the first electrode and the second electrode. The variable resistance layer includes a first layer and a second layer. The first layer has a relatively high crystallization rate. The second layer contacts the first layer. The second layer has a relatively low crystallization rate. The first layer and the second layer are stacked along a direction connecting the first electrode and the second electrode.
摘要:
A memory device includes a first electrode, a second electrode and a variable resistance layer. The second electrode includes a metal. The metal is more easily ionizable than a material of the first electrode. The variable resistance layer is disposed between the first electrode and the second electrode. The variable resistance layer includes a first layer and a second layer. The first layer has a relatively high crystallization rate. The second layer contacts the first layer. The second layer has a relatively low crystallization rate. The first layer and the second layer are stacked along a direction connecting the first electrode and the second electrode.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a memory cell array and a control circuit. The memory cell array include the memory cells each including a variable resistance element in which a reset current flowing in a reset operation is smaller than a set current flowing in a set operation by not less than one order of magnitude. The control circuit performs the reset operation and the set operation for the memory cells. The control circuit performs the reset operation for all memory cells being in the low resistance state and connected to selected first interconnections and selected second interconnections.
摘要:
According to one embodiment, a nonvolatile semiconductor memory device includes a memory cell array and a control circuit. The memory cell array include the memory cells each including a variable resistance element in which a reset current flowing in a reset operation is smaller than a set current flowing in a set operation by not less than one order of magnitude. The control circuit performs the reset operation and the set operation for the memory cells. The control circuit performs the reset operation for all memory cells being in the low resistance state and connected to selected first interconnections and selected second interconnections.
摘要:
According to one embodiment, a nonvolatile variable resistance element includes a first electrode, a second electrode, a variable resistance layer, and a dielectric layer. The second electrode includes a metal element. The variable resistance layer is arranged between the first electrode and the second electrode. A resistance change is reversibly possible in the variable resistance layer according to move the metal element in and out. The dielectric layer is inserted between the second electrode and the variable resistance layer and has a diffusion coefficient of the metal element smaller than that of the variable resistance layer.
摘要:
According to one embodiment, a memory device includes a first electrode, a second electrode and a variable resistance layer. The second electrode includes a metal. The metal is more easily ionizable than a material of the first electrode. The variable resistance layer is disposed between the first electrode and the second electrode. The variable resistance layer includes a first layer and a second layer. The first layer has a relatively high crystallization rate. The second layer contacts the first layer. The second layer has a relatively low crystallization rate. The first layer and the second layer are stacked along a direction connecting the first electrode and the second electrode.
摘要:
A resistance random access memory device according to an embodiment includes a first electrode, a second electrode and a variable resistance film provided between the first electrode and the second electrode. The second electrode includes material selected from the group consisting of silver, copper, zinc, gold, titanium, nickel, cobalt, tantalum, aluminum, and bismuth, alloys thereof, and silicides thereof. The variable resistance film includes silicon oxynitride. The variable resistance film includes a first resistance change layer having a first nitrogen concentration and a second resistance change layer having a second nitrogen concentration lower than the first nitrogen concentration.
摘要:
According to one embodiment, a storage device includes first electrodes, second electrodes, a resistance change layer provided between the first electrodes and the second electrodes, and ion metal particles that are formed in an island form between the first electrodes and the resistance change layer and that contain a metal movable inside the resistance change layer. The first electrodes and the second electrodes are formed of a material which is more unlikely to be ionized as compared to the metal, and the first electrodes are in contact with the resistance change layer in an area around the ion metal particles.