Abstract:
A pattern accuracy detecting apparatus includes a stage for supporting a substrate, an optical warpage detecting unit that measures a shape of a substrate disposed on the stage, an optical pattern detection unit that detects a position of a pattern on the substrate, and a processing unit that corrects the detected pattern position based on the measured shape of the substrate.
Abstract:
According to one embodiment, an imprint device includes a holding unit, a mounting unit, a moving unit, a curing unit, a pressing portion, and a detecting portion. The holding unit holds template having a pattern portion pressed onto a transfer portion provided on a substrate. The mounting unit mounts the substrate. The moving unit is provided on at least either the holding unit or the mounting unit. The moving unit moves the holding unit and the mounting unit in directions approaching each other or directions away from each other. The curing unit cures the transfer portion onto which the pattern portion of the template is pressed. The pressing portion pushes the template pressed onto the transfer portion in a direction intersecting a pressing direction of the template. The detecting portion detects a position of the template pushed by the pressing portion.
Abstract:
An imprint apparatus includes a template holder configured to hold a template that has a pattern formed thereon, the pattern to be transferred to a substrate by an imprinting process, a stage configured to hold the substrate, a liquid ejecting device configured to eject a resin precursor onto the substrate, an electric field plate configured to apply an electric field to the resin precursor on the substrate, and an electric field controller configured to apply a voltage to the electric field plate.
Abstract:
According to one embodiment, there is provided a mark comprising a first mark pattern, a second mark pattern, and an opening pattern. The first mark pattern is arranged in a lower layer of a semiconductor wafer that includes a substrate, the lower layer, an intermediate layer, and an upper layer. The second mark pattern is arranged in the upper layer. The opening pattern exposes the first mark pattern.
Abstract:
According to one embodiment, an alignment measurement system is configured to measure a position of a mark having the highest identifiability of a plurality of marks formed in a substrate. The plurality of marks are made of mutually different patterns. A device pattern is formed in the substrate using directed self-assembly after the plurality of marks is formed.
Abstract:
An exposure apparatus according to an embodiment controls the positioning between layers using an alignment correction value calculated on the basis of lower layer position information of a lower-layer-side pattern and upper layer position information of an upper-layer-side pattern. The lower layer position information includes alignment data, a focus map, and a correction value which is set on the basis of the previous substrate. The upper layer position information includes alignment data, a focus map, and a correction value which is a correction value for the positioning and is used when the upper-layer-side pattern is transferred.