Abstract:
The present disclosure relates to a method for controlling size distribution of formed polymer particles during preparation of aqueous polymer dispersion. The method comprises obtaining an aqueous polysaccharide solution, which comprises about 10 to 40 weight-% polysaccharide containing a free hydroxyl group, such as starch, and polymerising in the polysaccharide solution in the presence of a graft-linking, water-soluble redox system about 30 to 60 weight-% of at least one optionally substituted styrene, about 60 to 30 weight-% of at least one C1-C4-alkyl (meth)acrylate, and 0 to about 10 weight-% of other ethylenically unsaturated copolymerizable monomers. The size distribution of the formed polymer particles is controlled by adjusting viscosity of the polysaccharide solution before the polymerisation to a level less than about 20 mPas.
Abstract:
The present disclosure relates to a method for controlling size distribution of formed polymer particles during preparation of aqueous polymer dispersion. The method comprises obtaining an aqueous polysaccharide solution, which comprises about 10 to 40 weight-% polysaccharide containing a free hydroxyl group, such as starch, and polymerising in the polysaccharide solution in the presence of a graft-linking, water-soluble redox system about 30 to 60 weight-% of at least one optionally substituted styrene, about 60 to 30 weight-% of at least one C1-C4-alkyl (meth)acrylate, and 0 to about 10 weight-% of other ethylenically unsaturated copolymerizable monomers. The size distribution of the formed polymer particles is controlled by adjusting viscosity of the polysaccharide solution before the polymerisation to a level less than about 20 mPas. The present disclosure relates also to an aqueous polymer dispersion having the D(99) value less than about 160 nm for polymer particles in the polymer dispersion and its use.
Abstract:
The present invention relates to a method and an arrangement for dissolving starch. Specifically, the present invention relates to a method for dissolving starch by introducing mechanical force to at least partially gelatinized aqueous starch.
Abstract:
The invention relates to a method for improving rheological properties of an aqueous pigment slurry. In the method dispersion agent is added to an aqueous phase of a slurry comprising pigment particles or to the aqueous phase into which the pigment particles are to be added. The dispersion agent comprises styrene acrylate copolymer. The invention relates also to dispersion agent for a pigment slurry comprising a first component comprising styrene acrylate copolymer and a second component comprising a conventional dispersion agent, such as a straight-chain polyacrylate.
Abstract:
The present disclosure relates to a method for controlling size distribution of formed polymer particles during preparation of aqueous polymer dispersion. The method comprises obtaining an aqueous polysaccharide solution, which comprises about 10 to 40 weight-% polysaccharide containing a free hydroxyl group, such as starch, and polymerising in the polysaccharide solution in the presence of a graft-linking, water-soluble redox system about 30 to 60 weight-% of at least one optionally substituted styrene, about 60 to 30 weight-% of at least one C1-C4-alkyl(meth)acrylate, and 0 to about 10 weight-% of other ethylenically unsaturated copolymerizable monomers. The size distribution of the formed polymer particles is controlled by adjusting viscosity of the polysaccharide solution before the polymerisation to a level less than about 20 mPas. The present disclosure relates also to an aqueous polymer dispersion having the D(99) value less than about 160 nm for polymer particles in the polymer dispersion and its use.
Abstract:
The present invention relates to a granular microfibrillated cellulose product comprising a microfibrillated cellulose originating from agricultural biomass, said microfibrillated cellulose product comprising ≤75 wt % of cellulose, preferably ≤70 wt %, based on dry solids content of said product, wherein said granular microfibrillated cellulose product has a bulk density of 500-1200 kg/m3; a flowability of 5-60 ml/s, measured by a Copley scientific powder flowability tester having a stainless steel cylinder with orifice 16 or funnel with orifice 15; and a water content of at most 60 wt %, based on total microfibrillated cellulose product. The present invention further relates to its manufacture and use in and manufacture of paper and paperboard products.
Abstract:
The invention relates to a method for improving rheological properties of an aqueous pigment slurry. In the method dispersion agent is added to an aqueous phase of a slurry comprising pigment particles or to the aqueous phase into which the pigment particles are to be added. The dispersion agent comprises styrene acrylate copolymer. The invention also relates to a dispersion agent for a pigment slurry comprising a first component comprising styrene acrylate copolymer and a second component comprising a conventional dispersion agent, such as a straight-chain polyacrylate.
Abstract:
The present disclosure relates to a method for controlling size distribution of formed polymer particles during preparation of aqueous polymer dispersion. The method comprises obtaining an aqueous polysaccharide solution, which comprises about 10 to 40 weight-% polysaccharide containing a free hydroxyl group, such as starch, and polymerising in the polysaccharide solution in the presence of a graft-linking, water-soluble redox system about 30 to 60 weight-% of at least one optionally substituted styrene, about 60 to 30 weight-% of at least one C1-C4-alkyl(meth)acrylate, and 0 to about 10 weight-% of other ethylenically unsaturated copolymerizable monomers. The size distribution of the formed polymer particles is controlled by adjusting viscosity of the polysaccharide solution before the polymerisation to a level less than about 20 mPas.
Abstract:
The invention relates to a method for improving rheological properties of an aqueous pigment slurry. In the method dispersion agent is added to an aqueous phase of a slurry comprising pigment particles or to the aqueous phase into which the pigment particles are to be added. The dispersion agent comprises styrene acrylate copolymer. The invention relates also to dispersion agent for a pigment slurry comprising a first component comprising styrene acrylate copolymer and a second component comprising a conventional dispersion agent, such as a straight-chain polyacrylate.
Abstract:
The invention relates to a method for improving rheological properties of an aqueous pigment slurry. In the method dispersion agent is added to an aqueous phase of a slurry comprising pigment particles or to the aqueous phase into which the pigment particles are to be added. The dispersion agent comprises styrene acrylate copolymer. The invention relates also to dispersion agent for a pigment slurry comprising a first component comprising styrene acrylate copolymer and a second component comprising a conventional dispersion agent, such as a straight-chain polyacrylate.