Abstract:
An elevator includes a first elevator unit vertically movable in a hoistway; a second elevator unit vertically movable in a hoistway; a suspension roping including one or more belt-shaped suspension ropes interconnecting the first elevator unit and the second elevator unit; a drive wheel for moving said one or more belt-shaped suspension ropes; a plurality of cambered diverting wheels; said one or more belt-shaped suspension ropes each passing around the drive wheel and comprising consecutively a first rope section extending between the drive wheel and the first elevator unit; and a second rope section extending between the drive wheel and the second elevator unit wherein both rope sections diverge from the drive wheel towards the same lateral side thereof, the first rope section passing over a first cambered diverting wheel, in particular resting against a cambered circumferential surface area thereof, and therefrom down to the first elevator unit, and the second rope section passing over a second cambered diverting wheel, in particular resting against cambered circumferential surface area thereof, and therefrom down to the second elevator unit.
Abstract:
An elevator includes an elevator car and a counterweight; a first roping between the elevator car and counterweight and including at least one rope; a second roping between the elevator car and counterweight and including at least one rope; and a rope wheel arrangement, having at least one rope wheel, around which the at least one rope of the second roping passes. The longitudinal force transmission capability of the at least one rope of the second roping is based essentially on non-metallic fibers and is a belt-like rope having at least one contoured side provided with guide rib(s) and/or guide groove(s) oriented in the longitudinal direction of the rope, the side being fitted to pass against a contoured circumference of a rope wheel of the rope wheel arrangement, the circumference being provided with guide rib(s) and/or guide groove(s) so as to form a counterpart for the contoured side of the rope.
Abstract:
A rope of a lifting device, more particularly of a passenger transport elevator and/or freight transport elevator, an elevator, and a method for manufacturing the rope are disclosed. The rope includes an unbroken load-bearing part, the profile of which is essentially of rectangular shape, and the width of the cross-section is greater than the thickness and which load-bearing part comprises glass fiber reinforcements and/or aramid fiber reinforcements and/or carbon fiber reinforcements and/or polybenzoxazole fiber reinforcements and/or polyethylene fiber reinforcements and/or nylon fiber reinforcements in a polymer matrix material. The long sides of the cross-section of the load-bearing part include one or more grooves symmetrically or asymmetrically in the longitudinal direction of the rope, which grooves divide the load-bearing part into smaller parts.
Abstract:
A hoisting device rope has a width larger than a thickness thereof in a transverse direction of the rope. The rope includes a load-bearing part made of a composite material, the composite material including non-metallic reinforcing fibers, which include carbon fiber or glass fiber, in a polymer matrix. An elevator includes a drive sheave, an elevator car and a rope system for moving the elevator car by means of the drive sheave. The rope system includes at least one rope that has a width that is larger than a thickness thereof in a transverse direction of the rope. The rope includes a load-bearing part made of a composite material. The composite material includes reinforcing fibers in a polymer matrix.
Abstract:
In a rope of a lifting device, particularly of a passenger transport elevator and/or freight transport elevator, the width of which rope is greater than the thickness in the transverse direction of the rope, which rope includes a load-bearing part in the longitudinal direction of the rope, which load-bearing part includes carbon-fiber reinforced, aramid-fiber reinforced and/or glass-fiber reinforced composite material in a polymer matrix, and which rope includes one or more optical fibers and/or fiber bundles in connection with the load-bearing part and the optical fiber and/or fiber bundle is laminated inside the load-bearing part and/or the optical fiber and/or fiber bundle is glued onto the surface of the load-bearing part and/or and that the optical fiber and/or fiber bundle is embedded or glued into the polymer envelope surrounding the load-bearing part, as well as to a condition monitoring method for the rope of a lifting device.
Abstract:
The invention refers to an elevator comprising an elevator car and a suspension arrangement for suspending and/or moving an elevator car, which suspension arrangement comprises at least one suspension member, whereby at least one suspension member component is provided which component is to be applied to the suspension member for affecting the physical properties of the suspension member during the operation of the elevator. According to the invention the suspension member component applied to the suspension member comprises an component identifier which is an addition to the suspension member component which component identifier is configured to be identified visibly or via additional tools. The invention allows the unambiguous identification of the suspension member component and also the distribution of the component on the suspension member surface.
Abstract:
A brake system and method for elevators, the elevator comprising an elevator car and suspension means supporting the elevator car and the counterweight. The brake system comprises at least one brake configured to decelerate the elevator car, means for measuring elevator deceleration configured to produce feedback, such as a displacement, relating to elevator deceleration to the at least one brake, and means for adjusting brake force and/or torque based on the feedback from the means for measuring elevator deceleration. The means for adjusting brake force and/or torque is configured to control the brakes to produce a variable brake force and/or torque so that the elevator car deceleration is kept essentially constant at a predefined set point value or within a certain range around the predefined set point value.
Abstract:
A rope for a hoisting device, which rope is belt-shaped and includes several load bearing members spaced apart in the width direction of the belt-shaped rope and embedded in a common coating, each of the load bearing members including several load bearing strings twisted together. The load bearing strings are made of composite material including reinforcing fibers embedded in polymer matrix.
Abstract:
A method for manufacturing a rope includes providing at least one pre-manufactured elongated load bearing member for the rope and at least one pre-manufactured elongated surface part for the rope, guiding together said at least one pre-manufactured elongated load bearing member and said at least one pre-manufactured elongated surface part such that their sides lean against each other, and fixing said at least one pre-manufactured elongated load bearing member and said at least one pre-manufactured elongated surface part to each other. A rope obtained with the method, and an elevator including the rope obtained with the method are also disclosed.
Abstract:
A rope terminal assembly of an elevator fixing an elevator rope to a fixing base such as an elevator unit, the elevator being suitable for transporting passengers and/or goods, includes an elevator rope, whose width is larger than its thickness in a rope transverse direction, with at least one end having an end face, a rope end block attached to the rope end, one or more wedge elements, a wedge housing, where the terminal assembly includes a rope gap through which the elevator rope passes and the wedge element is arranged to wedge between the rope and the wedge housing thus locking the elevator rope in the gap, and the rope end block is attached on the end face side of the elevator rope with respect to the wedge element, and an elevator.