Abstract:
Provided is a resin composition for injection molding including a polyolefin resin, containing: at least one selected from the group consisting of aluminum hydroxide, magnesium hydroxide and a phosphorus compound in an amount of 10 to 60 mass %; a NOR-type hindered amine compound in an amount of 0.05 to 5 mass %; and a fibrous filler having an aspect ratio of 10 or more in an amount of 1 to 20 mass %, respectively, relative to the total amount of the resin composition, wherein a phosphorous content is 5 mass % or less relative to the total amount of the resin composition.
Abstract:
A polishing material comprising a polishing material particle including cerium, wherein, the polishing material particle is a secondary particle obtained by baking a primary particle which is a polishing material precursor particle; the primary particle is a sphere shape; an average particle size of the primary particle is within a range of 100 to 1000 nm; and an average particle size of the secondary particle is within a range of 300 to 10000 nm.
Abstract:
Technique to provide an abrasive regeneration method which, from a used abrasive, can recover an abrasive by an efficient method and can thereafter obtain a high-purity regenerated abrasive by a simple method. This abrasive regeneration method uses an abrasive comprising at least one type of abrasive selected from diamond, boron nitride, silicon carbide, alumina, alumina zirconia, zirconium oxide and cerium oxide. The abrasive regeneration involves a slurry recovery step (A) for recovering an abrasive slurry discharged from a polishing machine, a separation and concentration step (B) for adding an alkaline earth metal salt as an inorganic salt to the recovered abrasive slurry to aggregate the abrasive, and separating and concentrating the abrasive from a mother liquor, an abrasive recovery step (C) for recovering the separated and concentrated abrasive, and a second concentration step (D) for filter-treating the concentrated abrasive.
Abstract:
A method for preparing a recycled abrasive slurry includes: polishing a material to be polished, which includes silicon as a main component, with an abrasive slurry including a plurality of kinds of additives added for different purposes; and preparing a recycled abrasive slurry from a collected abrasive slurry collected after the polishing, wherein the recycled abrasive slurry is prepared through: step 1 of removing, from the collected abrasive slurry, at least an additive B capable of decreasing a polishing rate among the plurality of additives, and step 2 of replenishing at least an additive A capable of increasing a polishing rate among the plurality of additives, to the abrasive slurry from which an additive has been removed, which has been prepared in step 1.
Abstract:
Provided is a thermoplastic resin composition containing a thermoplastic resin A, a hard filler B and a compatibilizer C, wherein the hard filler B contains a hard filler B1 having an average particle diameter in the range of 0.7 to 40 μm and a hard filler B2 having an average particle diameter in the range of 0.01 to 0.5 μm, the compatibilizer C at least adheres to a surface of the hard filler B1, and a ratio WB1/WB2 is 1.5 or more, when WB1 and WB2 are adhesion masses of the compatibilizer C adhered to the surfaces of the hard filler B1 and the hard filler B2, respectively, and WB1 and WB2 each are measured per unit cross-sectional area.
Abstract:
A method for collecting an abrasive from an abrasive slurry which has been used for polishing an object including silicon as a main component includes: (i) adding a solvent to the abrasive slurry; (ii) dissolving particles of the polished object among components of the polished object contained in the abrasive slurry; and (iii) filtering the abrasive slurry to collect the abrasive, in which the steps (i) to (iii) are carried out without a pH adjuster to remove components of the polished object to collect the abrasive.
Abstract:
Provided is a halogen-free resin composition including a polyolefin resin, containing a phosphorus compound in an amount of 0.05 to 2.5 mass % as a phosphorus content; a NOR-type hindered amine in an amount of 0.05 to 5 mass %; and an inorganic filler in an amount of 3 to 50 mass %, respectively, with respect to the total amount of the resin composition, wherein a DTA (Differential Thermal Analysis) curve obtained by differential thermal analysis of the inorganic filler has an endothermic portion in a temperature range of 180 to 500° C.; and in the inorganic filler, a ratio value of a number of particles having a maximum diameter of 300 μm or more to a number of particles having a maximum diameter of 100 μm or more is ⅕ or less, or there are no particles having a maximum diameter of 100 μm or more.
Abstract:
An object of the present invention is to provide an abrasive slurry regeneration method capable of efficiently regenerating an abrasive slurry having a high polishing rate. The abrasive slurry regeneration method is an abrasive slurry regeneration method for polishing a polishing target containing silicon oxide as a main component using an abrasive slurry containing abrasive particles and a plurality of kinds of additives and then regenerating a collected abrasive slurry, characterized by including a regeneration step of collecting an additive having a molecular weight of 500 or more and an additive adsorbed by the abrasive particles among additives contained in the collected abrasive slurry together with the abrasive particles while an abrasive concentration (% by mass) is maintained within a range of 0.2 to 3000% with respect to an abrasive concentration (% by mass) of an unused abrasive slurry when being used for polishing a polishing target.
Abstract:
Disclosed are polishing material particles which have polishing performance suitable for precision polishing and also have a high polishing speed and high monodispersibility; a polishing material containing the polishing material particles; and a polishing processing method using the polishing material. The polishing material particles are spherical particles having an average aspect ratio of 1.00 to 1.15, wherein the particle diameter (D50 (nm)) of the polishing material particles as determined from a particle diameter cumulative distribution curve falls within the range from 50 to 1500 nm. The average content of cerium or the total content of cerium and at least one element selected from lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm) and europium (Eu) in the polishing material particles is 81 mol % or more relative to the total content of all of rare earth elements that constitute the polishing material particles.