Abstract:
The invention relates to an interventional apparatus comprising an interventional device with a handle (6). The handle comprises a) a first guide (20, 51) guiding an optical fiber, which is also guided within the interventional device, from a first proximal opening (14) of the handle to a distal portion (21) of the handle, wherein the first guide only has radii of curvature being larger than 10 mm, and b) a second guide (22) for guiding an elongated interventional instrument from a second proximal opening (13) of the handle to the distal portion of the handle. Since the first guide is relatively straight, the optical fiber is substantially not bent or only slightly bent and the likelihood that the interventional instrument and the optical fiber press against each other can be significantly reduced. This allows for an improved accuracy of determining the position of the interventional device by optical shape sensing.
Abstract:
A flow control device comprises a laminate structure of an electroactive material layer and a non-actuatable layer. An array of orifices is formed in one of the layers wherein the orifices are open in one of the rest state and actuated state and the orifices are closed in the other of the rest state and actuated state. Actuation of the electroactive material layer causes orifices to open and close so that flow control function may be implemented.
Abstract:
The invention provides a shape change device (20) utilising a plurality of particles (28) of electroactive polymer material embedded within a compliant material matrix (24) and adapted to deform in response to application of an electrical stimulus. A resultant shape-change of the compliant matrix enables realisation of a particular deformation profile across a surface of the compliant material. Particles are stimulated in plural groups by one or more arrangements of electrodes (34). Shapes, sizes, dimensionalities and locations of stimulated EAP particle regions may be selectively chosen to initiate a particular response in the material, and produce a particular desired deformation profile across the material surface.
Abstract:
The present invention relates to a consumable recognition system for recognizing placement and/or type of consumable containing a food substance for the preparation of a beverage by use of a beverage dispenser. To enable the recognition of placement and/or type of consumable in a simple, foolproof and easily implementable way an embodiment of the system comprises a light source (31, 301, 311, 321, 331, 341) for emitting light (35) to the consumable (4a, 40, 50, 60, 70, 80, 90), a light sensor (32 302, 312, 322, 332, 342) for sensing light (36) reflected from a reflection element (42, 52, 63, 73, 83, 93) of the consumable to obtain a sensor signal, wherein the sensor signal depends on the position, orientation, fluorescence, phosphorescence and/or polarization characteristic of said reflection element, and a signal processor (33) for recognizing placement and/or type of consumable based on said sensor signal.
Abstract:
An acoustic window layer for an ultrasound array, which layer has an inner surface arranged to face the array and an outer surface arranged to face a patient, and comprising an outer layer comprising a thermoplastic polymer selected from a polyolefin family (TPO) and an elastomer selected from the polyolefin family (POE) blended therein, wherein the outer layer located at the outer surface of the acoustic window layer. In a preferred embodiment the blend comprises a copolymer of ethylene-octene and polymethylpentene. The thermoplastic polyolefin provides the blend with mechanical, chemical stability and low acoustic wave attenuation; whilst the polyolefin elastomer provides a possibility to tune the acoustic impedance of the blend and to further improve its acoustic wave propagation properties.
Abstract:
Disclosed is an ultrasound array comprising a plurality of ultrasound transducer elements (20) on a carrier (10), said carrier further carrying an actuator arrangement (30, 30′) of a material having an adjustable shape in response to an electromagnetic stimulus, e.g. an electro active polymer or optically responsive polymer, wherein the material is arranged to change the orientation of said ultrasound transducer elements in response to said stimulus. This facilitates configurable beam shaping and/or body contour matching with the ultrasound array. An ultrasound system (100) comprising such an ultrasound array is also disclosed.
Abstract:
An elongated device, e.g. an interventional guide wire or catheter, comprises an optical fiber (OF) arranged to allow transmission of light to phase change material (PCM) arranged long the elongated device, for optically heating the phase change material (PCM) to change its stiffness from one stiffness value to a different stiffness value. Using distributed tilted or blazed Bragg gratings with light wavelength dependent unique grating periods along the optical fiber, it is possible to provide a guide wire or catheter which can be stiffness controlled at selected longitudinal portions. Especially, it may be preferred to be able to control the behavior of the tip of a guide wire or catheter for optimal navigation, e.g. during a FEVAR procedure. Portions of phase change material (PCM-1, PCM 2) arranged inside a tube material T_M can be activated at selected longitudinal parts of the elongated device.
Abstract:
The present invention relates to a consumable recognition system for recognizing placement and/or type of consumable containing a food substance for the preparation of a beverage by use of a beverage dispenser. To enable the recognition of placement and/or type of consumable in a simple, foolproof and easily implementable way an embodiment of the system comprises a light source (31, 301, 311, 321, 331, 341) for emitting light (35) to the consumable (4a, 40, 50, 60, 70, 80, 90), a light sensor (32 302, 312, 322, 332, 342) for sensing light (36) reflected from a reflection element (42, 52, 63, 73, 83, 93) of the consumable to obtain a sensor signal, wherein the sensor signal depends on the position, orientation, fluorescence, phosphorescence and/or polarization characteristic of said reflection element, and a signal processor (33) for recognizing placement and/or type of consumable based on said sensor signal.
Abstract:
The present invention relates to a consumable recognition system for recognizing placement and/or type of consumable containing a food substance for the preparation of a beverage by use of a beverage dispenser. To enable the recognition of placement and/or type of consumable in a simple, foolproof and easily implementable way the system comprises a plurality of magnetic and/or electric field elements (31, 32, 33, 301) for separately sensing a magnetic and/or electric field, wherein said consumable comprises one or more magnetically and/or electrically conductive elements (42, 51, 61, 71, 81, 82, 91, 92) and the sensed magnetic fields depend on at least one characteristic of the one or more magnetically and/or electrically conductive elements, a driver (34) for providing drive currents to said magnetic and/or electric field elements, and a signal processor (35) for recognizing placement and/or type of consumable based on the sensed magnetic and/or electric fields.
Abstract:
A light transmissive optical component includes an electroactive material layer structure having a controlled deformation. When actuating the component, different relative thickness changes are implemented at different regions of the electroactive material layer thereby providing a non-uniform change in an optical function between those different regions.