Abstract:
The invention provides a lighting device (1) comprising (i) a light source (10) configured to generate light source light (11), and (ii) a light converter (100) configured to convert at least part of the light source light (11) into visible converter light (121), wherein the light converter (100) comprises a polymeric host material (110) with light converter nanoparticles (120) embedded in the polymeric host material (110), wherein the polymeric host material (110) is based on radical polymerizable monomers, and wherein the polymeric host material (110) contains equal to or less then 5 ppm radical initiator based material relative to the total weight of the polymeric host material (110).
Abstract:
The invention provides a lighting device comprising (i) a light source configured to generate light source light, and (ii) a light converter configured to convert at least part of the light source light into visible converter light, wherein the light converter comprises a polymeric host material with light converter nanoparticles embedded in the polymeric host material, wherein the polymeric host material is based on radical polymerizable monomers, and wherein the polymeric host material contains equal to or less then 5 ppm radical initiator based material relative to the total weight of the polymeric host material.
Abstract:
The invention provides a lighting device (1) comprising (i) a light source (10) configured to generate light source light (11), and (ii) a light converter (100) configured to convert at least part of the light source light (11) into visible converter light (121), wherein the light converter (100) comprises a polymeric host material (110) with light converter nanoparticles (120) embedded in the polymeric host material (110), wherein the polymeric host material (110) is based on radical polymerizable monomers, and wherein the polymeric host material (110) contains equal to or less then 5 ppm radical initiator based material relative to the total weight of the polymeric host material (110).
Abstract:
The invention provides a lighting device comprising (i) a light source configured to generate light source light, and (ii) a light converter configured to convert at least part of the light source light into visible converter light, wherein the light converter comprises a polymeric host material with light converter nanoparticles embedded in the polymeric host material, wherein the polymeric host material is based on radical polymerizable monomers, and wherein the polymeric host material contains equal to or less then 5 ppm radical initiator based material relative to the total weight of the polymeric host material.
Abstract:
The invention provides a lighting device (1) comprising (i) a light source (10) configured to generate light source light (11), and (ii) a light converter (100) configured to convert at least part of the light source light (11) into visible converter light (121), wherein the light converter (100) comprises a polymeric host material (110) with light converter nanoparticles (120) embedded in the polymeric host material (110), wherein the polymeric host material (110) is based on radical polymerizable monomers, wherein the polymeric host material comprises a poly acrylate polymer and wherein the light converter nanoparticles (120) comprise Ag (silver) nanoparticles having mean dimensions below 3 nm.
Abstract:
There is provided an illumination device (100, 150, 200, 300) comprising: a periodic plasmonic antenna array (114), comprising a plurality of individual antenna elements (106) arranged in an antenna array plane, the plasmonic antenna array being configured to support surface lattice resonances at a first wavelength, arising from diffractive coupling of localized surface plasmon resonances in the individual antenna elements; a photon emitter (152) configured to emit photons at the first wavelength, the photon emitter being arranged in close proximity of the plasmonic antenna array such that at least a portion of the emitted photons are emitted by a coupled system comprising said photon emitter and said plasmonic antenna array, wherein the plasmonic antenna array is configured to comprise plasmon resonance modes being out-of plane asymmetric, such that light emitted from the plasmonic antenna array has an anisotropic angle distribution.
Abstract:
There is provided an illumination device (100, 150, 200, 300) comprising: a periodic plasmonic antenna array (114), comprising a plurality of individual antenna elements (106) arranged in an antenna array plane, the plasmonic antenna array being configured to support surface lattice resonances at a first wavelength, arising from diffractive coupling of localized surface plasmon resonances in the individual antenna elements; a photon emitter (152) configured to emit photons at the first wavelength, the photon emitter being arranged in close proximity of the plasmonic antenna array such that at least a portion of the emitted photons are emitted by a coupled system comprising said photon emitter and said plasmonic antenna array, wherein the plasmonic antenna array is configured to comprise plasmon resonance modes being out-of plane asymmetric, such that light emitted from the plasmonic antenna array has an anisotropic angle distribution.