Abstract:
Provided is a method for synthesizing air electrode powder, which uses instead of an organic solvent lanthanum-nitrate, strontium-nitrate, cobalt-nitrate, and iron-nitrate, which are affordable and can undergo water-based synthesis, by controlling additional mol ratio and a synthesis temperature of a chelate agent and an esterification reaction accelerating agent instead of complex process controlling conditions, such as a hydrolysis condition and pH in order to control particle shape.
Abstract:
The present invention relates to the manufacture of a high capacity electrode by synthesizing an excellent Li2MnO3-based composite material Li(LixNiyCozMnwO2) to improve the characteristics of an inactive Li2MnO3 material with a specific capacity of about 460 mAh/g. Here, a manufacturing method of a cathode material for a lithium secondary battery uses a Li2MnO3-based composite material Li(LixNiyCozMnwO2) by reacting a starting material wherein a nickel nitrate solution, a manganese nitrate solution and a cobalt nitrate solution are mixed, with a complex agent by co-precipitation.
Abstract translation:本发明涉及通过合成优异的Li 2 MnO 3基复合材料Li(Li x Ni y Co z Mn n O 2 O 2)来制造高容量电极,以改善比电容为约460mAh / g的无活性Li 2 MnO 3材料的特性。 这里,锂二次电池用正极材料的制造方法使用混合有硝酸镍溶液,硝酸锰溶液和硝酸钴溶液的原料与Li2MnO3系复合材料Li(Li x Ni y Co z Mn n O 2 O 2) 复合剂通过共沉淀。
Abstract:
A method of manufacturing a metal hybrid, heat-dissipating material includes the steps of (a) preparing a spherical metal powder and a flake graphite powder having an aspect ratio greater than 1, respectively; (b) preparing a powder mixture by inserting only the spherical metal powder and the flake graphite powder into a container, followed by dry mixing the powder mixture using a multi-axial mixing method for rotating or vibrating the container about two or more different rotation axes without any liquid input and without any mixing aids; (c) manufacturing a green compact by pressing the powder mixture; and (d) sintering the green compact to provide the metal hybrid, heat-dissipating material.
Abstract:
Provided are a CIS/CGS/CIGS thin-film manufacturing method and a solar cell manufactured by using the same. The CIS/CGS/CIGS thin-film manufacturing method enables CIS, CGS, and CIGS thin-films through depositing an electrode layer on a substrate and depositing a light absorber layer by sputtering a single target of each of CIS including copper (Cu), indium (In), and selenium (Se) and CGS copper (Cu), gallium (Ga) and selenium (Se). In addition, a solar cell having excellent structural, optical and electrical properties is prepared by using the same. Thus, a thin-film can be prepared by depositing a CIG, CGS, or CIGS light absorber layer with a single sputtering process by using a single target of each of CIS (CuInSe2) and CGS (CuGaSe2), to thereby enable to manufacture thin-films of various characteristics according to a control of a composition ratio of In and Ga as well as simplification of the process, and to thus provide a very favorable effect on the economics and efficiency.
Abstract:
Provided are a method for preparing a solid electrolyte material for a cheap solid oxide fuel cell capable of implementing high ion conductivity at a medium-low temperature of 800° C. or lower, and a method for preparing a unit cell of a solid oxide fuel cell by using the same. The method for preparing a solid electrolyte material for a solid oxide fuel cell comprises: providing a starting material comprising ytterbium nitrate [Yb(NO3)3.H2O], scandium nitrate [Sc(NO3)3.H2O] and zirconium oxychloride [ZrOCl2.H2O] in a ratio of 6:4:90 by mol; forming a mixture metal salt aqueous solution by dissolving the starting material; forming a precursor by mixing the mixture metal salt aqueous solution and a chelating agent and coprecipitating the obtained mixture; washing the precursor by providing ultrapure water multiple times; filtering the washed precursor by using a vacuum filtration apparatus; and forming a solid electrolyte powder by heat treating the filtered precursor.
Abstract:
The present invention relates to the manufacture of a high capacity electrode by synthesizing an excellent Li2MnO3-based composite material Li(LixNiyCozMnwO2) to improve the characteristics of an inactive Li2MnO3 material with a specific capacity of about 460 mAh/g. Here, a manufacturing method of a cathode material for a lithium secondary battery uses a Li2MnO3-based composite material Li(LixNiyCozMnwO2) by reacting a starting material wherein a nickel nitrate solution, a manganese nitrate solution and a cobalt nitrate solution are mixed, with a complex agent by co-precipitation.
Abstract translation:本发明涉及通过合成优异的Li 2 MnO 3基复合材料Li(Li x Ni y Co z Mn n O 2 O 2)来制造高容量电极,以改善比电容为约460mAh / g的无活性Li 2 MnO 3材料的特性。 这里,锂二次电池用正极材料的制造方法使用混合有硝酸镍溶液,硝酸锰溶液和硝酸钴溶液的原料与Li2MnO3系复合材料Li(Li x Ni y Co z Mn n O 2 O 2) 复合剂通过共沉淀。