Abstract:
Provided are a method for preparing a solid electrolyte material for a cheap solid oxide fuel cell capable of implementing high ion conductivity at a medium-low temperature of 800° C. or lower, and a method for preparing a unit cell of a solid oxide fuel cell by using the same. The method for preparing a solid electrolyte material for a solid oxide fuel cell comprises: providing a starting material comprising ytterbium nitrate [Yb(NO3)3.H2O], scandium nitrate [Sc(NO3)3.H2O] and zirconium oxychloride [ZrOCl2.H2O] in a ratio of 6:4:90 by mol; forming a mixture metal salt aqueous solution by dissolving the starting material; forming a precursor by mixing the mixture metal salt aqueous solution and a chelating agent and coprecipitating the obtained mixture; washing the precursor by providing ultrapure water multiple times; filtering the washed precursor by using a vacuum filtration apparatus; and forming a solid electrolyte powder by heat treating the filtered precursor.
Abstract:
One embodiment of the present invention relates to a method of manufacturing polycrystalline silicon thin-film solar cell by a method of crystallizing a large-area amorphous silicon thin film using a linear electron beam, and the technical problem to be solved is to crystallize an amorphous silicon thin film, which is formed on a low-priced substrate, by means of an electron beam so as for same to easily be of high quality by having high crystallization yield and to be processed at a low temperature. To this end, one embodiment of the present invention provides a method of manufacturing polycrystalline silicon thin-film solar cell by means of a method for crystallizing a large-area amorphous silicon thin film using a linear electron beam, the method comprising: a substrate preparation step for preparing a substrate; a type 1+ amorphous silicon layer deposition step for forming a type 1+ amorphous silicon layer on the substrate; a type 1 amorphous silicon layer deposition step for forming a type 1 amorphous silicon layer on the type 1+ amorphous silicon layer; an absorption layer formation step for forming an absorption layer by radiating a linear electron beam to the type 1 amorphous silicon layer and thus crystallizing the type 1 amorphous layer and the type 1+ amorphous silicon layer; a type 2 amorphous silicon layer deposition step for forming a type 2 amorphous silicon layer on the absorption layer; and an emitter layer formation step for forming an emitter layer by radiating a linear electron beam to the type 2 amorphous silicon layer and thus crystallizing the type 2 amorphous silicon layer, wherein the linear electron beam is radiated from above type 1 and type 2 amorphous silicon layers in a linear scanning manner in which to reciprocate in a predetermined area.
Abstract:
The present invention relates to the manufacture of a high capacity electrode by synthesizing an excellent Li2MnO3-based composite material Li(LixNiyCozMnwO2) to improve the characteristics of an inactive Li2MnO3 material with a specific capacity of about 460 mAh/g. Here, a manufacturing method of a cathode material for a lithium secondary battery uses a Li2MnO3-based composite material Li(LixNiyCozMnwO2) by reacting a starting material wherein a nickel nitrate solution, a manganese nitrate solution and a cobalt nitrate solution are mixed, with a complex agent by co-precipitation.
Abstract translation:本发明涉及通过合成优异的Li 2 MnO 3基复合材料Li(Li x Ni y Co z Mn n O 2 O 2)来制造高容量电极,以改善比电容为约460mAh / g的无活性Li 2 MnO 3材料的特性。 这里,锂二次电池用正极材料的制造方法使用混合有硝酸镍溶液,硝酸锰溶液和硝酸钴溶液的原料与Li2MnO3系复合材料Li(Li x Ni y Co z Mn n O 2 O 2) 复合剂通过共沉淀。
Abstract:
One embodiment of the present invention relates to a method of manufacturing polycrystalline silicon thin-film solar cell by a method of crystallizing a large-area amorphous silicon thin film using a linear electron beam, and the technical problem to be solved is to crystallize an amorphous silicon thin film, which is formed on a low-priced substrate, by means of an electron beam so as for same to easily be of high quality by having high crystallization yield and to be processed at a low temperature. To this end, one embodiment of the present invention provides a method of manufacturing polycrystalline silicon thin-film solar cell by means of a method for crystallizing a large-area amorphous silicon thin film using a linear electron beam, the method comprising: a substrate preparation step for preparing a substrate; a type 1+ amorphous silicon layer deposition step for forming a type 1+ amorphous silicon layer on the substrate; a type 1 amorphous silicon layer deposition step for forming a type 1 amorphous silicon layer on the type 1+ amorphous silicon layer; an absorption layer formation step for forming an absorption layer by radiating a linear electron beam to the type 1 amorphous silicon layer and thus crystallizing the type 1 amorphous layer and the type 1+ amorphous silicon layer; a type 2 amorphous silicon layer deposition step for forming a type 2 amorphous silicon layer on the absorption layer; and an emitter layer formation step for forming an emitter layer by radiating a linear electron beam to the type 2 amorphous silicon layer and thus crystallizing the type 2 amorphous silicon layer, wherein the linear electron beam is radiated from above type 1 and type 2 amorphous silicon layers in a linear scanning manner in which to reciprocate in a predetermined area.
Abstract:
Disclosed is a medical mask apparatus using optical fibers which can selectively project a laser beam to an entire treated portion or a local portion of skin. A medical mask apparatus using optical fibers for projecting a fine laser beam to the skin to activate skin cells and expedite circulation of blood in the skin includes: a laser light source generator for generating and supplying a laser beam having a predetermined wavelength band; a plurality of optical fibers branched from the laser light source generator; and a mask body having a cover portion having a predetermined area such that the cover portion covers a portion of a face and in which a portion of a distal end of the optical fiber is exposed along the entire cover. An electro-optic material is coated on an output end of the optical fiber such that an output of the output end of the optical fiber is controlled by an external electrical signal, and the output end of the optical fiber has a diameter smaller than that of an input end of the optical fiber connected to the laser light source generator such that fine projection is allowed.
Abstract:
One embodiment of the present invention relates to a method of manufacturing polycrystalline silicon thin-film solar cell by a method of crystallizing a large-area amorphous silicon thin film using a linear electron beam, and the technical problem to be solved is to crystallize an amorphous silicon thin film, which is formed on a low-priced substrate, by means of an electron beam so as for same to easily be of high quality by having high crystallization yield and to be processed at a low temperature. To this end, one embodiment of the present invention provides a method of manufacturing polycrystalline silicon thin-film solar cell by means of a method for crystallizing a large-area amorphous silicon thin film using a linear electron beam, the method comprising: a substrate preparation step for preparing a substrate; a type 1+ amorphous silicon layer deposition step for forming a type 1+ amorphous silicon layer on the substrate; a type 1 amorphous silicon layer deposition step for forming a type 1 amorphous silicon layer on the type 1+ amorphous silicon layer; an absorption layer formation step for forming an absorption layer by radiating a linear electron beam to the type 1 amorphous silicon layer and thus crystallizing the type 1 amorphous layer and the type 1+ amorphous silicon layer; a type 2 amorphous silicon layer deposition step for forming a type 2 amorphous silicon layer on the absorption layer; and an emitter layer formation step for forming an emitter layer by radiating a linear electron beam to the type 2 amorphous silicon layer and thus crystallizing the type 2 amorphous silicon layer, wherein the linear electron beam is radiated from above type 1 and type 2 amorphous silicon layers in a linear scanning manner in which to reciprocate in a predetermined area.
Abstract:
One embodiment of the present invention relates to a method of manufacturing polycrystalline silicon thin-film solar cell by a method of crystallizing a large-area amorphous silicon thin film using a linear electron beam, and the technical problem to be solved is to crystallize an amorphous silicon thin film, which is formed on a low-priced substrate, by means of an electron beam so as for same to easily be of high quality by having high crystallization yield and to be processed at a low temperature. To this end, one embodiment of the present invention provides a method of manufacturing polycrystalline silicon thin-film solar cell by means of a method for crystallizing a large-area amorphous silicon thin film using a linear electron beam, the method comprising: a substrate preparation step for preparing a substrate; a type 1+ amorphous silicon layer deposition step for forming a type 1+ amorphous silicon layer on the substrate; a type 1 amorphous silicon layer deposition step for forming a type 1 amorphous silicon layer on the type 1+ amorphous silicon layer; an absorption layer formation step for forming an absorption layer by radiating a linear electron beam to the type 1 amorphous silicon layer and thus crystallizing the type 1 amorphous layer and the type 1+ amorphous silicon layer; a type 2 amorphous silicon layer deposition step for forming a type 2 amorphous silicon layer on the absorption layer; and an emitter layer formation step for forming an emitter layer by radiating a linear electron beam to the type 2 amorphous silicon layer and thus crystallizing the type 2 amorphous silicon layer, wherein the linear electron beam is radiated from above type 1 and type 2 amorphous silicon layers in a linear scanning manner in which to reciprocate in a predetermined area.
Abstract:
Disclosed is a medical mask apparatus using optical fibers which can selectively project a laser beam to an entire treated portion or a local portion of skin. A medical mask apparatus using optical fibers for projecting a fine laser beam to the skin to activate skin cells and expedite circulation of blood in the skin is provided.
Abstract:
The present invention relates to the manufacture of a high capacity electrode by synthesizing an excellent Li2MnO3-based composite material Li(LixNiyCozMnwO2) to improve the characteristics of an inactive Li2MnO3 material with a specific capacity of about 460 mAh/g. Here, a manufacturing method of a cathode material for a lithium secondary battery uses a Li2MnO3-based composite material Li(LixNiyCozMnwO2) by reacting a starting material wherein a nickel nitrate solution, a manganese nitrate solution and a cobalt nitrate solution are mixed, with a complex agent by co-precipitation.
Abstract translation:本发明涉及通过合成优异的Li 2 MnO 3基复合材料Li(Li x Ni y Co z Mn n O 2 O 2)来制造高容量电极,以改善比电容为约460mAh / g的无活性Li 2 MnO 3材料的特性。 这里,锂二次电池用正极材料的制造方法使用混合有硝酸镍溶液,硝酸锰溶液和硝酸钴溶液的原料与Li2MnO3系复合材料Li(Li x Ni y Co z Mn n O 2 O 2) 复合剂通过共沉淀。