Abstract:
The present invention relates to a method for preparing 3,6-anhydro-L-galactose, and use thereof. More specifically, 3,6-anhydro-L-galactose, which is a monosaccharide constituting agar, is produced in a high yield through chemical and enzymatic methods, and the physiological activities thereof such as whitening, moisturizing, antioxidant, antiinflammatory activities and the like are displayed, thereby enabling industrial use thereof.
Abstract:
The present invention provides Hahella chejuensis-derived recombinant cellulase and a use thereof. The recombinant cellulase according to the present invention has a high stability at a high temperature and an optimized activity at a neutral pH, and therefore has a high availability in a process. Also, since the cellulase according to the present invention has an exoglucanase activity as well as an endoglucanase activity, a monosaccharide can be produced during decomposition of cellulose and an additional treatment required in a fermentation process is not needed, and therefore a cost may be reduced. Such an enzyme activity is advantageous to a fermentation or thermal treatment condition for producing a biofuel, and therefore industrial profits may be achieved.
Abstract:
The present invention relates to a transformed strain having ethanol production potential, constructed by introducing a foreign gene for ethanol production into a non-ethanol producing acetogen Eubacterium limosum and a method for producing ethanol, using the strain. According to the present invention, Eubacterium limosum which is a conventional acetogen lacking ethanol production potential is used to produce ethanol, which is a high value-added product, as a single product from carbon monoxide contained in waste gas.
Abstract:
The present invention relates to agarooligosaccharide hydrolase and a method for producing 3,6-anhydro-L-galactose and galactose from agarose by using the same. More specifically, the production yield of 3,6-anhydro-L-galactose and galactose from agarose, that is, the saccharification yield, is improved by using β-agarooligosaccharide hydrolase having an agarotriose hydrolytic activity.
Abstract:
The present invention relates to a heat-resistant agarase and a monosaccharide production method using same. More particularly, in the present invention, a heat-resistant agarase may be used to produce galactose and 3,6-anhydro-L-galactose at high yield by efficiently breaking down agarose or agar without a chemical pretreatment, a neutralization process, or an agarotriose hydrolase treatment process.
Abstract:
The present invention relates to a use of 3,6-anhydro-L-galactose for preventing dental caries. More specifically, 3,6-anhydro-L-galactose inhibits the growth of oral microorganisms and exhibits anti-caries activity to inhibit the production of acids caused by the consumption of a carbon source by the oral microorganisms. Thus, 3,6-anhydro-L-galactose can be used in pharmaceuticals, food products, oral hygiene preparations, etc. for preventing, ameliorating or treating oral diseases caused by oral microorganisms, such as dental caries, gingivitis, periodontitis, oral mucosal ulcer, halitosis or xerostomia.
Abstract:
The present invention relates to a recombinant microorganism metabolizing 3,6-anhydro-L-galactose and a use thereof, and, more particularly, can produce ethanol from a recombinant microorganism expressing an enzyme group involved in a metabolic pathway of 3,6-AHG.
Abstract:
The present invention relates to a recombinant microorganism metabolizing 3,6-anhydro-L-galactose and a use thereof, and, more particularly, can produce ethanol from a recombinant microorganism expressing an enzyme group involved in a metabolic pathway of 3,6-AHG.
Abstract:
The present invention relates to a novel method for purifying 3,6-anhydro-L-galactose by using microorganisms and provides an effect of improving the production yield of 3,6-anhydro-L-galactose by using microorganisms during purification after enzymatic hydrolysis of agarose or agar.
Abstract:
The present invention relates to a use of 3,6-anhydro-L-galactose for preventing dental caries. More specifically, 3,6-anhydro-L-galactose inhibits the growth of oral microorganisms and exhibits anti-caries activity to inhibit the production of acids caused by the consumption of a carbon source by the oral microorganisms. Thus, 3,6-anhydro-L-galactose can be used in pharmaceuticals, food products, oral hygiene preparations, etc. for preventing, ameliorating or treating oral diseases caused by oral microorganisms, such as dental caries, gingivitis, periodontitis, oral mucosal ulcer, halitosis or xerostomia.