Abstract:
Superparmagnetic acid-functionalized nanoparticle catalysts are provided along with methods of using the same to protonate an oxygen atom of a carbon-oxygen bond. Particularly, the catalysts comprise a nanoparticle having a ferromagnetic core surrounded by a metal oxide shell. The nanoparticle is at least partially coated with an acid-functionalized siloxane compound. The acid-functionalized nanoparticles may be used to catalyze any number of reactions that can be catalyzed in the presence of protons. The ferromagnetic core permits the nanoparticle catalyst material to be separated from the reaction medium through application of a magnetic field and reused.
Abstract:
Apparatus and methods are provided that are capable of mass production of particulate materials, such as graphene particulates. The apparatus comprises an ignition assembly that comprises readily interchangeable electrode cassettes and that may be configured to self-clean in between the combustion cycles in which the particulate materials are generated. Methods of generating the particulate materials require low energy inputs in order to initiate the combustion reaction, which is then self-sustaining until the reactants are depleted.
Abstract:
Immunocompetent animal models having immunological tolerance to a xenograft and methods of producing the same. The animal models are tolerized to the xenograft in the pre-immune, fetal or embryonic stage, followed by transplanting the xenograft into the animal in the post-natal stage, such that the post-natal animal is immunologically tolerant to the xenograft, while remaining immunocompetent.
Abstract:
Immunocompetent animal models having immunological tolerance to a xenograft and methods of producing the same. The animal models are tolerized to the xenograft in the pre-immune, fetal or embryonic stage, followed by transplanting the xenograft into the animal in the post-natal stage, such that the post-natal animal is immunologically tolerant to the xenograft, while remaining immunocompetent.
Abstract:
Superparmagnetic acid-functionalized nanoparticle catalysts are provided along with methods of using the same to protonate an oxygen atom of a carbon-oxygen bond. Particularly, the catalysts comprise a nanoparticle having a ferromagentic core surrounded by a metal oxide shell. The nanoparticle is at least partially coated with an acid-functionalized siloxane compound. The acid-functionalized nanoparticles may be used to catalyze any number of reactions that can be catalyzed in the presence of protons. The ferromagnetic core permits the nanoparticle catalyst material to be separated from the reaction medium through application of a magnetic field and reused.