摘要:
Described herein are filter assemblies for removing high molecular weight organic components from liquefied petroleum gas, as well as methods for removing high molecular weight components from liquefied petroleum gases. The filter assemblies include an upstream carbon-containing filter media pack and a downstream filter media pack.
摘要:
Described herein are filter assemblies for removing high molecular weight organic components from liquefied petroleum gas, as well as methods for removing high molecular weight components from liquefied petroleum gases. The filter assemblies include an upstream carbon-containing filter media pack and a downstream filter media pack.
摘要:
A system and method for removing and managing water in liquid hydrocarbons is disclosed. The system and method utilize a water absorbent filter, such as one that utilizes super absorbent polymers, cellulose, cotton or other suitable material to remove water from the system that is either present as free water or as dissolved moisture within the liquid hydrocarbon. The super absorbent polymer filter can be regenerated through the introduction of a dried liquid hydrocarbon, through the use of an air drying system, or a combination of both.
摘要:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbant or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters.
摘要:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbent or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. The web can comprise a nanofiber layer having dispersed within the nanofiber layer a super absorbent particulate and optionally a second particulate material that can act as an absorbent, adsorbent or reactant. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. If needed these materials can also react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid in a flow-through mode while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
摘要:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbant or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. The web can comprise a nanofiber layer having dispersed within the nanofiber layer a super absorbent particulate and optionally a second particulate material that can act as an absorbent, adsorbant or reactant. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. If needed these materials can also react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid in a flow-through mode while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
摘要:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbant or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. The web can comprise a nanofiber layer having dispersed within the nanofiber layer a super absorbent particulate and optionally a second particulate material that can act as an absorbent, adsorbant or reactant. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. If needed these materials can also react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid in a flow-through mode while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
摘要:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbant or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. The web can comprise a nanofiber layer having dispersed within the nanofiber layer a super absorbent particulate and optionally a second particulate material that can act as an absorbent, adsorbant or reactant. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. If needed these materials can also react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid in a flow-through mode while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
摘要:
A twist drill assembly (10) comprising a shaft (30) and a drill tip (20); the shaft having a single internal shaft conduit (34) for a fluid, extending between orifices (36, 37) formed into the shaft; the drill tip having an internal drill tip conduit (22) for the fluid, extending between orifices formed into the drill tip; the shaft and the drill tip configured such that the drill tip is connectable to an end of the shaft with the internal drill tip conduit in communication with the internal shaft conduit, allowing the fluid to be capable of flowing from the internal shaft conduit into the internal drill tip conduit; the internal shaft conduit having a spiral form aligned with a central longitudinal axis of the shaft, and configured to complement the arrangement of spiral flutes (38) formed on the shaft.
摘要:
A method and system of conditioning human skin and hair using a hand-held skin/hair conditioner having interchangeable interface conductors that are contoured to enhance electrical conductivity between the conditioner and a variety of body areas. Each of the interchangeable interface conductors are preferably formed to maximize surface area contact with a variety of body surfaces such as scalp/hair, body skin, and facial skin. In a preferred embodiment, the skin/hair conditioner is formed to fit comfortably and controllably in a user's grasp while providing maximum contact with the selected body surface. The skin/hair conditioner includes an audio signal generator and a vibration mechanism to alert a user of a change in status of the conditioner. The interface conductors may be (1) smoothly rounded, (2) include teeth, (3) spherical or hemispherical (4) include multiple rounded nodules. The housings for the conditioner may be (1) elongated and somewhat flattened, (2) of elongated cylindrical shape, or (3) of a compact configuration similar to a door knob. The interface conductors and conditioning system may have a releasable latch, and spring arrangements for ejecting the interface conductor when the latch is released.