摘要:
A mechanical response of an implantable medical device (IMD) to a first static magnetic field and a first gradient magnetic field slew rate is simulated by exposing the IMD to a second static magnetic field having a magnitude greater than the first static magnetic field and generating a second gradient magnetic field at the IMD such that a product of the second static magnetic field and a second gradient magnetic field slew rate is substantially equal to a product of the first static magnetic field and the first gradient magnetic field slew rate.
摘要:
The present invention generally relates to implantable medical devices and more particularly to various means for ultrasonically welding, swaging or staking various components in an implantable medical device, most preferably by employing appropriately configured covers or lids. Covers or lids are attached to header or connector modules mounted on an hermetically enclosed and sealed enclosure, where the connector or header module and enclosure comprise an implantable medical device. The covers or lids preferably trap or otherwise secure any of a number of various connector or header module components within the header or connector modules. Examples of such trapped or secured components include grommets, set screw connector blocks, seals, feedthrough wires, multi-beam contacts, electrical contacts, antennas, radio-opaque markers, connector ribbons and the like.
摘要:
A capacitive filtered feedthrough assembly is formed in a solid state manner to employ highly miniaturized conductive paths each filtered by a discoid capacitive filter embedded in a capacitive filter array. A non-conductive, co-fired metal-ceramic substrate is formed from multiple layers that supports one or a plurality of substrate conductive paths and it is brazed to a conductive ferrule, adapted to be welded to a case, using a conductive, corrosion resistant braze material. The metal-ceramic substrate is attached to an internally disposed capacitive filter array that encloses one or a plurality of capacitive filter capacitor active electrodes each coupled to a filter array conductive path and at least one capacitor ground electrode. Each capacitive filter array conductive path is joined with a metal-ceramic conductive path to form a feedthrough conductive path. Bonding pads are attached to the internally disposed ends of each feedthrough conductive path, and corrosion resistant, conductive buttons are attached to and seal the externally disposed ends of each feedthrough conductive path. A plurality of conductive, substrate ground paths are formed extending through the co-fired metal-ceramic substrate between internally and externally facing layer surfaces thereof and electrically isolated from the substrate conductive paths. The capacitor ground electrodes are coupled electrically to the plurality of conductive, substrate ground paths and to the ferrule.
摘要:
A capacitive filtered feedthrough assembly is formed in a solid state manner to employ highly miniaturized conductive paths each filtered by a discoid capacitive filter embedded in a capacitive filter array. A non-conductive, co-fired metal-ceramic substrate is formed from multiple layers that supports one or a plurality of substrate conductive paths and it is brazed to a conductive ferrule, adapted to be welded to a case, using a conductive, corrosion resistant braze material. The metal-ceramic substrate is attached to an internally disposed capacitive filter array that encloses one or a plurality of capacitive filter capacitor active electrodes each coupled to a filter array conductive path and at least one capacitor ground electrode. Each capacitive filter array conductive path is joined with a metal-ceramic conductive path to form a feedthrough conductive path. Bonding pads are attached to the internally disposed ends of each feedthrough conductive path, and corrosion resistant, conductive buttons are attached to and seal the externally disposed ends of each feedthrough conductive path. A plurality of conductive, substrate ground paths are formed extending through the co-fired metal-ceramic substrate between internally and externally facing layer surfaces thereof and electrically isolated from the substrate conductive paths. The capacitor ground electrodes are coupled electrically to the plurality of conductive, substrate ground paths and to the ferrule.
摘要:
An implantable medical device (IMD) includes a connector header for making electrical and mechanical connections with a proximal connector assembly of an electrical medical lead and includes a retainer for retaining a penetrable grommet within a header grommet aperture. A connector block disposed within a header body of the connector header has a threaded bore aligned with a header grommet aperture and a connector block bore aligned with a header connector bore. The penetrable grommet is disposed within the header grommet aperture, and a setscrew is threaded into the threaded bore having a setscrew socket disposed to be engaged by a tool inserted through the penetrable grommet within the header grommet aperture to enable rotation of the setscrew within the threaded bore to tighten the setscrew against or to loosen the setscrew from a lead connector element received in the header connector bore.
摘要:
A method and apparatus for attaching a pre-formed header module, e.g. a connector header module or an electrode bearing header module, etc., to a hermetically sealed enclosure of the implantable medical device, typically including electronic integrated circuits, batteries, electromechanical pumps, or the like, are disclosed. A plurality of upstanding tabs that are fixed to the hermetically sealed enclosure, e.g. to the enclosure attachment surface, extend into a like plurality of tab channels formed in the header module housing. The upstanding tab(s) are inserted into the respective tab channel(s) during seating of the module and enclosure attachment surfaces and effects an initial alignment of the header module with the hermetically sealed enclosure. Each attachment tab has a retention feature formed on or in the tab that is designed to accommodate the flow of the thermoplastic material during the application of ultrasonic energy in the region of the tab channel and to cooperate with the solidified mass of thermoplastic material. During application of the ultrasonic energy, the thermoplastic material melts and flows into the remaining space of the tab channel and encapsulate the attachment tab including the retention feature. Upon termination of the ultrasonic energy, the thermoplastic housing material cools and solidifies and forms a continuous mass that encapsulates the surface of the attachment tab and the retention feature.
摘要:
A capacitive filter feedthrough assembly and method of making the same are disclosed for shielding an implantable medical device such as pacemaker or defibrillator from electromagnetic interference or noise. A ferrule is adapted for mounting onto a conductive device housing by welding, soldering, brazing or gluing, and supports a terminal pin for feedthrough passage to a housing interior. A capacitive filter is mounted at the inboard side of a device housing, with capacitive filter electrode plate sets coupled respectively to the housing and the terminal pin by an electrically conductive combination of solder and brazing. In one embodiment of the invention, multiple capacitive filters are provided in an array within a common base structure, where each capacitive filter is associated with a respective terminal pin.
摘要:
A method and apparatus for attaching a pre-formed header module, e.g. a connector header module or an electrode bearing header module, etc., to a hermetically sealed enclosure of the implantable medical device, typically including electronic integrated circuits, batteries, electromechanical pumps, or the like, are disclosed. A plurality of upstanding tabs that are fixed to the hermetically sealed enclosure, e.g. to the enclosure attachment surface, extend into a like plurality of tab channels formed in the header module housing. The upstanding tab(s) are inserted into the respective tab channel(s) during seating of the module and enclosure attachment surfaces and effects an initial alignment of the header module with the hermetically sealed enclosure. Each attachment tab has a retention feature formed on or in the tab that is designed to accommodate the flow of the thermoplastic material during the application of ultrasonic energy in the region of the tab channel and to cooperate with the solidified mass of thermoplastic material. During application of the ultrasonic energy, the thermoplastic material melts and flows into the remaining space of the tab channel and encapsulate the attachment tab including the retention feature. Upon termination of the ultrasonic energy, the thermoplastic housing material cools and solidifies and forms a continuous mass that encapsulates the surface of the attachment tab and the retention feature.
摘要:
A method and apparatus for attaching a pre-formed header module to a hermetically sealed enclosure of an implantable medical device are described. A plurality of upstanding tabs attached to the hermetically sealed enclosure extend into a plurality of corresponding tab channels formed in the header module. The upstanding tabs are inserted into the respective tab channels during seating of the module and enclosure attachment surfaces and effect an initial alignment of the header module with the hermetically sealed enclosure. Each attachment tab has a retention feature such as a recess formed on or in the tab that is designed to receive molten thermoplastic material when ultrasonic energy is applied in the region of the tab channel.
摘要:
The present invention generally relates to an improved implantable medical device (IMD) and more particularly to an ultrasonically weld perforated lid for an IMD to form a hermetic seal between the IMD and the perforated lid. Appropriately configured perforated lids retain one or more components within a cavity or port formed in a part of an IMD. Such lids preferably secure a pierceable resilient grommet, septum or other resilient member in a cavity or port. When an adjustment instrument, a pull tool or a syringe is temporarily inserted therethrough and later extracted, the resilient member heals (i.e., seals and/or reseals). Preferably, the resilient member abuts a mechanical stop and is compressed slightly during assembly and ultrasonic welding of the lid. The resilient member preferably has a lateral dimension like the cavity or port so that when the lid compresses the resilient member it expands slightly and contacts the interior cavity surfaces thus improving the seal.