摘要:
Disclosed herein are systems and methods for controlling a computing environment with one or more gestures by sizing a virtual screen centered on a user, and by adapting the response of the computing environment to gestures made by a user and modes of use exhibited by a user. The virtual screen may be sized using depth, aspects of the user such as height and/or user profile information such as age and ability. Modes of use by a user may also be considered in determining the size of the virtual screen and the control of the system, the modes being based on profile information and/or information from a capture device.
摘要:
Techniques are provided for rendering, in a see-through, near-eye mixed reality display, a virtual object within a virtual hole, window or cutout. The virtual hole, window or cutout may appear to be within some real world physical object such as a book, table, etc. The virtual object may appear to be just below the surface of the physical object. In a sense, the virtual world could be considered to be a virtual container that provides developers with additional locations for presenting virtual objects. For example, rather than rendering a virtual object, such as a lamp, in a mixed reality display such that appears to sit on top of a real world desk, the virtual object is rendered such that it appears to be located below the surface of the desk.
摘要:
A system for allowing a virtual object to interact with other virtual objects across different spaces within an augmented reality (AR) environment and to transition between the different spaces is described. An AR environment may include a plurality of spaces, each comprising a bounded area or volume within the AR environment. In one example, an AR environment may be associated with a three-dimensional world space and a two-dimensional object space corresponding with a page of a book within the AR environment. A virtual object within the AR environment may be assigned to the object space and transition from the two-dimensional object space to the three-dimensional world space upon the detection of a space transition event. In some cases, a dual representation of the virtual object may be used to detect interactions between the virtual object and other virtual objects in both the world space and the object space.
摘要:
A system and method to present a user wearing a head mounted display with supplemental information when viewing a live event. A user wearing an at least partially see-through, head mounted display views the live event while simultaneously receiving information on objects, including people, within the user's field of view, while wearing the head mounted display. The information is presented in a position in the head mounted display which does not interfere with the user's enjoyment of the live event.
摘要:
A system for generating an augmented reality environment in association with one or more attractions or exhibits is described. In some cases, a see-through head-mounted display device (HMD) may acquire one or more virtual objects from a supplemental information provider associated with a particular attraction. The one or more virtual objects may be based on whether an end user of the HMD is waiting in line for the particular attraction or is on (or in) the particular attraction. The supplemental information provider may vary the one or more virtual objects based on the end user's previous experiences with the particular attraction. The HMD may adapt the one or more virtual objects based on physiological feedback from the end user (e.g., if a child is scared). The supplemental information provider may also provide and automatically update a task list associated with the particular attraction.
摘要:
The technology provides embodiments for making static printed content being viewed through a see-through, mixed reality display device system more dynamic with display of virtual data. A printed content item, for example a book or magazine, is identified from image data captured by cameras on the display device, and user selection of a printed content selection within the printed content item is identified based on physical action user input, for example eye gaze or a gesture. A task in relation to the printed content selection can also be determined based on physical action user input. Virtual data for the printed content selection is displayed in accordance with the task. Additionally, virtual data can be linked to a work embodied in a printed content item. Furthermore, a virtual version of the printed material may be displayed at a more comfortable reading position and with improved visibility of the content.
摘要:
A system for generating and displaying holographic visual aids associated with a story to an end user of a head-mounted display device while the end user is reading the story or perceiving the story being read aloud is described. The story may be embodied within a reading object (e.g., a book) in which words of the story may be displayed to the end user. The holographic visual aids may include a predefined character animation that is synchronized to a portion of the story corresponding with the character being animated. A reading pace of a portion of the story may be used to control the playback speed of the predefined character animation in real-time such that the character is perceived to be lip-syncing the story being read aloud. In some cases, an existing book without predetermined AR tags may be augmented with holographic visual aids.
摘要:
A system recognizes human beings in their natural environment, without special sensing devices attached to the subjects, uniquely identifies them and tracks them in three dimensional space. The resulting representation is presented directly to applications as a multi-point skeletal model delivered in real-time. The device efficiently tracks humans and their natural movements by understanding the natural mechanics and capabilities of the human muscular-skeletal system. The device also uniquely recognizes individuals in order to allow multiple people to interact with the system via natural movements of their limbs and body as well as voice commands/responses.
摘要:
A system for identifying an AR tag and determining a location for a virtual object within an augmented reality environment corresponding with the AR tag is described. In some environments, the location of a virtual object corresponding with a particular AR tag may be determined by identifying a predefined object, determining an orientation and a scale of the predefined object relative to a head-mounted display device (HMD) based on a model of the predefined object, and inferring the location of the virtual object based on the orientation and the scale of the predefined object. In some cases, an identification of the particular AR tag corresponding with the virtual object may be acquired by aggregating and analyzing individual identity determinations from a plurality of HMDs within an augmented reality environment.
摘要:
A system and method are disclosed for synthesizing information received from multiple audio and visual sources focused on a single scene. The system may determine the positions of capture devices based on a common set of cues identified in the image data of the capture devices. As a scene may often have users and objects moving into and out of the scene, data from the multiple capture devices may be time synchronized to ensure that data from the audio and visual sources are providing data of the same scene at the same time. Audio and/or visual data from the multiple sources may be reconciled and assimilated together to improve an ability of the system to interpret audio and/or visual aspects from the scene.