摘要:
This invention provides a photocatalyst material, which can be produced at low cost without using platinum, particularly a visible light response-type photocatalyst material, a material having a photocatalyst mechanism not possessed by the conventional photocatalyst material, a process for producing the material, and a method for decomposing a contaminant using the material. The photocatalyst material comprises a) an oxide of a first metal and b) an aqua complex salt of a second metal. In this case, for the oxide of a first metal, the redox potential of a conduction band lower end in the oxide is on a rather negative side than 0.2 V (a value as measured at pH=0, vs. reference electrode potential). For the aqua complex salt of a second metal, the redox potential of a second metal ion in the aqua complex salt is on a rather negative side than 3.0 V (a value as measured at pH=0, vs. reference electrode potential). In the material, the aqua complex salt of a second metal is chemically adsorbed on the oxide of a first metal.
摘要:
This invention provides a photocatalyst material, which can be produced at low cost without using platinum, particularly a visible light response-type photocatalyst material, a material having a photocatalyst mechanism not possessed by the conventional photocatalyst material, a process for producing the material, and a method for decomposing a contaminant using the material. The photocatalyst material comprises a) an oxide of a first metal and b) an aqua complex salt of a second metal. In this case, for the oxide of a first metal, the redox potential of a conduction band lower end in the oxide is on a rather negative side than 0.2 V (a value as measured at pH=0, vs. reference electrode potential). For the aqua complex salt of a second metal, the redox potential of a second metal ion in the aqua complex salt is on a rather negative side than 3.0 V (a value as measured at pH=0, vs. reference electrode potential). In the material, the aqua complex salt of a second metal is chemically adsorbed on the oxide of a first metal.
摘要:
The present invention provides a tungsten trioxide microparticle carrying on its surface divalent copper salt. The divalent copper salt is utilized to perform a multi-electron reduction of oxygen. The tungsten trioxide exhibits a high oxidative decomposition activity when exposed to visible light.
摘要:
The present invention relates to a photocatalytic material having a visible light activity which includes a tungsten-doped titanium oxide or a tungsten/gallium-codoped titanium oxide, and a divalent copper salt and/or a trivalent iron salt supported on a surface of the doped or codoped titanium oxide, and a process for producing the photocatalytic material.
摘要:
A divalent copper salt and/or trivalent iron salt is supported on a surface of a metal ion-doped titanium oxide obtained by doping titanium oxide with metal ions to give a metal ion-doped titanium oxide with a valence band potential of 3 V or more (vs. SHE, pH=0) and a bandgap of 3 V or less between the valence band and an energy level of electrons excited from the valence band (including conduction band minimum potential and isolated potential). The metal ion-doped titanium oxide can be made to exhibit strong oxidative decomposition activity when irradiated with visible light based on the fact the divalent copper salt or trivalent iron salt functions as a catalyst for multi-electron reduction of oxygen.
摘要:
The present invention provides a tungsten trioxide microparticle carrying on its surface divalent copper salt. The divalent copper salt is utilized to perform a multi-electron reduction of oxygen. The tungsten trioxide exhibits a high oxidative decomposition activity when exposed to visible light.
摘要:
The present invention relates to a photocatalytic material having a visible light activity which includes a tungsten-doped titanium oxide or a tungsten/gallium-codoped titanium oxide, and a divalent copper salt and/or a trivalent iron salt supported on a surface of the doped or codoped titanium oxide, and a process for producing the photocatalytic material.
摘要:
A divalent copper salt and/or trivalent iron salt is supported on a surface of a metal ion-doped titanium oxide obtained by doping titanium oxide with metal ions to give a metal ion-doped titanium oxide with a valence band potential of 3 V or more (vs. SHE, pH=0) and a bandgap of 3 V or less between the valence band and an energy level of electrons excited from the valence band (including conduction band minimum potential and isolated potential). The metal ion-doped titanium oxide can be made to exhibit strong oxidative decomposition activity when irradiated with visible light based on the fact the divalent copper salt or trivalent iron salt functions as a catalyst for multi-electron reduction of oxygen.
摘要:
Battery information output equipment allows a driver of an electric vehicle 10 of an electricity consumer 2, now parked, to input what battery capacity is required at two or more points of time on or before the time at which the electric vehicle is scheduled to come into use, considering an operation schedule for the vehicle, and transmits the usable capacity at each point of the times, i.e., maximum capacity minus capacity required at each point of the times, to a power supply/demand management center 3, so that charge and discharge of a battery 17 is controlled by a charge/discharge command from the power supply/demand management center 3 such that use of battery capacity for power supply and demand leveling is kept within the usable capacity at any point of the times.
摘要:
According to a map display device, from current location information acquired by a current location acquiring unit 6 and boundary coordinate information in time zone information acquired by a time zone information acquiring unit 22, it is determined whether or not a vehicle 9 is located within a set area which is provided in the range of a predetermined distance from a boundary of a time zone to which a current location of the vehicle 9 belongs, and if it is determined that the vehicle 9 is located within the set area, a display unit 3 displays distinctively the time zone to which the current location of the vehicle 9 belongs and a time zone which is adjacent to the corresponding time zone through the set area.