摘要:
A polarization component, capable of efficiently reflecting an obliquely transmitted light beam toward a light source without degrading the transmission-polarization property of a perpendicular incident light beam, is provided. A C-plate having an oblique retardation of at least λ/8 with respect to a light beam inclined by at least 30° is disposed between at least two reflective circular polarizer layers whose selective reflection wavelength bands of polarized light overlapping each other. A combination of a reflective linear polarizer and a quarter wavelength plate may be used instead of the reflective circular polarizer. Alternatively, a combination of two reflective linear polarizer layers and two quarter wavelength plate layers (Nz≧2) disposed therebetween can provide a similar effect. Further, a combination of two reflective linear polarizer layers and a half wavelength plate (Nz≧1.5) disposed therebetween may be used. When reflective linear polarizer layers are used, they must be bonded together with their axial directions set at a certain angle. The polarization component is preferably used in various image display apparatuses such as liquid crystal display apparatuses and organic EL display apparatuses.
摘要:
A polarization component, capable of efficiently reflecting an obliquely transmitted light beam toward a light source without degrading the transmission-polarization property of a perpendicular incident light beam, is provided. A C-plate having an oblique retardation of at least λ/8 with respect to a light beam inclined by at least 30° is disposed between at least two reflective circular polarizer layers whose selective reflection wavelength bands of polarized light overlapping each other. A combination of a reflective linear polarizer and a quarter wavelength plate may be used instead of the reflective circular polarizer. Alternatively, a combination of two reflective linear polarizer layers and two quarter wavelength plate layers (Nz≧2) disposed therebetween can provide a similar effect. Further, a combination of two reflective linear polarizer layers and a half wavelength plate (Nz≧1.5) disposed therebetween may be used. When reflective linear polarizer layers are used, they must be bonded together with their axial directions set at a certain angle. The polarization component is preferably used in various image display apparatuses such as liquid crystal display apparatuses and organic EL display apparatuses.
摘要:
An imaging device module includes an imaging device including a light incident plane on which light is incident, and a reverse face disposed on an opposite side of the light incident plane; and a thermal conductive sheet provided on the reverse face for dissipating heat generated from the imaging device.The thermal conductive sheet contains a plate-like boron nitride particle, and the thermal conductive sheet has a thermal conductivity in a direction perpendicular to the thickness direction of 4 W/m·K or more.
摘要:
A thermal conductive sheet includes a plate-like boron nitride particle. The thermal conductive sheet has a thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet of 4 W/m·K or more, and the 5% weight loss temperature of 250° C. or more. The thermal conductive sheet has a water absorption of 3 vol % or less.
摘要:
A heat dissipation structure includes a substrate, an electronic component mounted on the substrate, a heat dissipation member for dissipating heat generated from the electronic component, and a thermal conductive adhesive sheet provided on the substrate so as to cover the electronic component. The thermal conductive adhesive sheet includes a thermal conductive layer containing a plate-like boron nitride particle. The thermal conductive layer has a thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive layer of 4 W/m·K or more, and the thermal conductive adhesive sheet is in contact with the heat dissipation member.
摘要:
A thermal conductive sheet containing a plate-like boron nitride particle, wherein the thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet is 4 W/m·K or more, and a glass transition point determined as the peak value of tanδ obtained by measuring a dynamic viscoelasticity of the thermal conductive sheet at a frequency of 10 Hz is 125° C. or more.
摘要:
A power module includes a power module board including an insulating layer and a conductive circuit formed on the insulating layer, a power device provided on the power module board and electrically connected to the conductive circuit, and a thermal conductive sheet for dissipating the heat generated from the power module board and/or the power device. The thermal conductive sheet contains a plate-like boron nitride particle and the thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet is 4 W/m·K or more.
摘要:
A light-emitting diode device includes a light-emitting diode, a power circuit portion for supplying electric power to the light-emitting diode, and a heat dissipating member for dissipating the heat generated from the light-emitting diode. The heat dissipating member is made of a thermal conductive sheet which contains a plate-like boron nitride particle. The thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet is 4 W/m·K or more.
摘要:
A thermal conductive sheet contains a plate-like boron nitride particle. The proportion of the boron nitride particle content is 35 vol % or more, and the thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet is 4 W/m·K or more.
摘要:
A back light includes an irradiating portion for applying light to a liquid crystal panel and a heat diffusing member which is in contact with the irradiating portion. The heat diffusing member is made of a thermal conductive sheet containing a plate-like boron nitride particle and the thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet is 4 W/m·K or more.