摘要:
This invention relates to an exposure apparatus for synchronously scanning a mask and a photosensitive substrate with respect to a plurality of projection optical systems, thereby properly transferring an entire pattern area on the mask onto the photosensitive substrate. A plurality of sets of mask-side reference marks and substrate-side reference marks are arranged at positions corresponding to each other on the mask surface and the photosensitive substrate surface and at least at two positions conjugate with the plurality of projection optical systems. The displacement amount between an image of a mask-side reference mark or a substrate-side reference mark formed on the corresponding substrate-side reference mark or mask-side reference mark through the projection optical system and the position of the substrate-side reference mark and the mask-side reference mark is measured. The imaging characteristics of the plurality of projection optical systems are corrected in accordance with the displacement amount.
摘要:
A scanning exposure apparatus is arranged to illuminate a mask, to project an image of the mask through a projection optical system onto a photosensitive substrate, and to move the mask and the photosensitive substrate relative to the projection optical system, thereby effecting exposure of an entire surface of the mask on the photosensitive substrate, and the exposure apparatus comprises a position detector which detects a relative positional relation between the mask and the photosensitive substrate; a memory which stores positional information obtained by the position detector; a position correcting device which corrects the relative positional relation between the mask and the photosensitive substrate, based on the positional information read out from the memory device; and a controller which makes the position detector detect the relative positional relation between the mask and the photosensitive substrate while the mask and the photosensitive substrate are carried past a projection region of the projection optical system to an exposure start position, and makes the position correcting device correct the relative positional relation between the mask and the photosensitive substrate, based on the positional information read out from the memory, while the mask and the photosensitive substrate are stopped at the exposure start position and/or during the exposure.
摘要:
An exposure apparatus, having an illumination optical system for radiating a light beam from a light source to a pattern area of a mask for transferring the image of the pattern area onto a photosensitive substrate by the light beam passing through the mask, is provided with plural sets of a first reference mark and a second reference mark arranged on the mask and the photosensitive substrate at positions corresponding to each other, and a light-shielding device for shielding the light beams radiated toward the second reference marks, whereby it is possible to re-use the second reference marks in a post-process by preventing the first reference marks on the mask from being superposed on the second reference marks on the photosensitive substrate or from being transferred onto a part near the second reference marks.
摘要:
An alignment device includes an image pickup optical system for picking up an image of a first reference mark disposed on a mask and an image of a second reference mark disposed on a photosensitive substrate through an image pickup optical system, a memory for storing information associated with the imaging characteristics of the image pickup optical system, and a correction system for correcting the positions of the first and second reference marks, detected using image information from the image pickup system, on the basis of the information associated with the imaging characteristics of the image pickup optical system.
摘要:
Disclosed is a projection exposure method for transferring a pattern formed on a mask onto a photosensitive substrate through a projection optical system. A light beam having a first wavelength for exposure is radiated through the projection optical system onto a first mark area including a fiducial mark on a fiducial plate installed on a substrate stage, reflected light from the first mark area is detected to obtain a position of the fiducial mark. A light beam having a second wavelength to which the photosensitive substrate is not photosensitive is radiated through the projection optical system onto the first mark area, reflected light from the first mark area is detected to obtain a position of the fiducial mark. A positional discrepancy of the fiducial mark caused by the difference in wavelength between the first and second wavelengths is previously calculated on the basis of results of the detection. The light beam having the second wavelength is radiated through the projection optical system onto an alignment mark on the photosensitive substrate, reflected light therefrom is detected to obtain a position of the photosensitive substrate under the light beam having the second wavelength. A positional discrepancy of the photosensitive substrate is corrected on the basis of a result of the detection and the calculation, and thus positional alignment for the photosensitive substrate is performed, followed by actual exposure.
摘要:
Apparatus and methods are disclosed for transferring a pattern defined by a mask onto a surface of a substrate. The apparatus includes an illumination optical system for illuminating the pattern on the mask. A projection optical system forms an erect image of the pattern on the substrate. For exposure, the mask and substrate are movable together in a scanning direction relative to the projection optical system. First and second relative-displacement measuring systems, the first being separated from the second by a predetermined distance perpendicular to the scanning direction, measure displacement of the mask relative to the substrate in the scanning direction. First and second detection systems detect displacement of the mask and substrate, respectively, in the direction perpendicular to the scanning direction. A position-adjusting system adjusts the position of at least one of the mask and substrate. A calculation system calculates a position-adjusting amount based on outputs from the first and second relative-displacement measuring systems and from the first and second detection systems. A control system controls the position-adjusting system based on an output from the calculation system.
摘要:
A projection exposure apparatus includes an illumination optical system for illuminating a plurality of partial areas on a mask. A plurality of projection optical systems each project images of the partial areas thus illuminated onto a photosensitive substrate. A mask table holds the mask. A position detector detects a position of the mask table. A substrate table holds the photosensitive substrate. A plurality of first reference marks are provided on the mask table; each of the plurality of first reference marks are disposed at a position corresponding to each of the plurality of projection optical systems. A plurality of second reference marks are provided on the substrate table; the second reference marks are substantially conjugate with the first reference marks with respect to the projection optical systems and are in a predetermined positional relation with the first reference marks in in-plane directions of the mask and the photosensitive substrate. A positional deviation detector detects positional deviations between the first reference marks and second reference marks when light beams from the illumination optical system are radiated onto the plurality of first reference marks to project the plurality of first reference marks through the projection optical systems onto the plurality of second reference marks. A correcting device corrects imaging characteristics of the projection optical systems, based on the positional deviations. The first reference marks can comprise a single aperture of a plurality of apertures. A reverse-type aperture may be employed. The positional deviation detector may include a single photodetector or a plurality of photodetectors.
摘要:
An exposure device sequentially transfers a pattern formed in a mask onto connected multiple regions present consecutively on a substrate through a projection optical system. The device includes a substrate stage moving in two dimensions and carrying the substrate in a movement coordinate system determined by a first axis and a mutually perpendicular second axis. A mark detecting sensor detects positions of alignment marks formed on the substrate. A magnification adjustment device corrects the magnification of the projection optical system. At least one calculating device is used to separately calculate extension amounts of the substrate in the direction of the first axis and in the direction of the second axis based on information relating to the positions of the alignment marks detected by the mark detecting sensor. An amount of magnification correction provided by the magnification adjustment device is set based on the extension amounts calculated, and scales of the first and second axes of the movement coordinate system specifying movement of the substrate stage are changed by identical amounts.
摘要:
A plurality of interference length (distance) measuring means which are opposed to a movable mirror are aligned in the direction in which said movable mirror moves at an interval narrower than the length of the mirror surface. These interference length measuring means are switched according to movement of the movable mirror. Thus, the range within which distances from the mirror surface are measured can be made wider than the length of the mirror surface of the movable mirror.
摘要:
In the first step of an exposure method of the present invention, an alignment optical system is arranged to oppose one of a first mask mark on a photomask and a first substrate mark on a photosensitive substrate, thereby detecting a first deviation amount between the position of the first mask mark and that of the first substrate mark. In the second step, the alignment optical system is arranged to oppose one of a second mask mark on the photomask and a second substrate mark on the photosensitive substrate, thereby detecting a second deviation mark between the position of the second mask mark and that of the second substrate mark. In the third step, correction values for minimizing the first and second deviation amounts are calculated. In the fourth step, the relative positional relationship between the image of an original pattern on the photomask and a shot area on the photosensitive substrate is adjusted on the basis of a correction value. In the fifth step, at least one of the first and second steps is executed subsequent to the fourth step to newly detect the first or second deviation amount. In the sixth step, the first to fifth steps are repeatedly executed until one of the first and second deviation amounts detected in the fifth step falls within a predetermined allowance.