摘要:
Provided is a method of manufacturing a substrate for a liquid discharge head including a first face, energy generating elements which generate the energy to be used to discharge a liquid to a second face opposite to the first face, and liquid supply ports for supplying the liquid to the energy generating elements. The method includes preparing a silicon substrate having, at the first face, an etching mask layer having an opening corresponding to a portion where the liquid supply ports are to be formed, and having first recesses provided within the opening, and second recesses provided in the region of the second face where the liquid supply ports are to be formed, the first recesses and the second recesses being separated from each other by a portion of the substrate; and etching the silicon substrate by crystal anisotropic etching from the opening of the first face to form the liquid supply ports.
摘要:
A method of manufacturing a substrate for a liquid discharge head, the substrate being a silicon substrate having a first surface opposed to a second surface, the method comprising the steps of providing a layer on the second surface of the silicon substrate, wherein the layer has a lower etch rate than silicon when exposed to an etchant of silicon, partially removing the layer so as to expose part of the second surface of the silicon substrate, wherein the exposed part surrounds at least one part of the layer; and wet etching the layer and the exposed part of the second surface of the silicon substrate, using the etchant of silicon, to form a liquid supply port extending from the second surface to the first surface of the silicon substrate.
摘要:
A method of manufacturing a substrate for a liquid discharge head, the substrate being a silicon substrate having a first surface opposed to a second surface, the method comprising the steps of providing a layer on the second surface of the silicon substrate, wherein the layer has a lower etch rate than silicon when exposed to an etchant of silicon, partially removing the layer so as to expose part of the second surface of the silicon substrate, wherein the exposed part surrounds at least one part of the layer; and wet etching the layer and the exposed part of the second surface of the silicon substrate, using the etchant of silicon, to form a liquid supply port extending from the second surface to the first surface of the silicon substrate.
摘要:
Provided is a method of manufacturing a substrate for a liquid discharge head including a first face, energy generating elements which generate the energy to be used to discharge a liquid to a second face opposite to the first face, and liquid supply ports for supplying the liquid to the energy generating elements. The method includes preparing a silicon substrate having, at the first face, an etching mask layer having an opening corresponding to a portion where the liquid supply ports are to be formed, and having first recesses provided within the opening, and second recesses provided in the region of the second face where the liquid supply ports are to be formed, the first recesses and the second recesses being separated from each other by a portion of the substrate; and etching the silicon substrate by crystal anisotropic etching from the opening of the first face to form the liquid supply ports.
摘要:
A method for manufacturing a substrate for liquid-ejecting heads includes etching a surface of a silicon substrate using a first etchant, with a silicon oxide layer as a mask, to form a depression as a part of a liquid supply port, and subsequently etching at least the silicon oxide layer and the thickness sandwiched between the depression and the etched surface of the silicon substrate with a second etchant to form the liquid supply port.
摘要:
A method for manufacturing a substrate for liquid-ejecting heads includes etching a surface of a silicon substrate using a first etchant, with a silicon oxide layer as a mask, to form a depression as a part of a liquid supply port, and subsequently etching at least the silicon oxide layer and the thickness sandwiched between the depression and the etched surface of the silicon substrate with a second etchant to form the liquid supply port.
摘要:
Disclosed is a method of including the steps of preparing a substrate having a flow-path-wall member; bonding the flow-path-wall member to a resin layer that is composed of a photo-curing resin and serves as the ejection port member such that spaces serving as the flow paths are provided between the substrate and the photo-curing resin; providing through-holes in the resin layer such that the spaces communicate with the outside air; exposing part of the resin layer to light to form an exposed portion and an unexposed portion; heating the exposed portion of the resin layer; and removing the unexposed portion from the heated resin layer to form the ejection ports, removing the unexposed portion from the heated resin layer to form the ejection ports, thereby forming the ejection port member.
摘要:
The present invention is a method of manufacturing a liquid discharge head, which includes providing a substrate on which a solid member is disposed to surround a region that becomes the flow path, and a metal layer made of a metal or a metal compound is disposed inside of the region, forming a mold made of a metal or a metal compound inside of the region, disposing a cover layer made of a resin to cover the solid member and the mold in contact with the solid member and the mold wherein the solid member and the metal are formed with a distance therebetween, and removing the mold to form the flow path.
摘要:
The present invention is a method of manufacturing a liquid discharge head, which includes providing a substrate on which a solid member that becomes a flow path wall member is disposed to surround a region that becomes a flow path, forming a mold made of a metal or a metal compound inside of the region, disposing a cover layer made of a resin to cover the solid member and the mold, and removing the mold to form the flow path.
摘要:
A method for manufacturing a recording head including forming a flow-channel side-wall forming layer which contains a photosensitive resin, on a substrate having ejection energy generating elements and wiring thereon; exposing the flow-channel side-wall forming layer to light, and optically determining a flow channel; forming a shape stabilizing layer which contains a photosensitive resin; forming an ejection orifice forming layer which contains a photopolymerization initiator and a negative photosensitive resin; exposing the ejection orifice forming layer to light, and optically determining an ejection orifice; and developing the ejection orifice forming layer, shape stabilizing layer, and flow-channel side-wall forming layer, in the order named. The photosensitive resin in the shape stabilizing layer is a material to be cured by a component that is produced upon the exposure of the ejection orifice forming layer and derives from the photopolymerization initiator.