摘要:
In one embodiment, the present invention provides a viscosified treatment fluid composition comprising a base fluid, a gelling agent, and a breaker composition that comprises an oxidizing breaker and a breaker activator that comprises a metal and a protein. In another embodiment, the present invention provides a viscosified treatment fluid composition comprising a base fluid, a gelling agent, and a breaker composition that comprises an oxidizing breaker and a breaker activator that comprises iron. In an embodiment, the present invention provides a breaker composition comprising an oxidizing breaker and a breaker activator that comprises a metal and a protein.
摘要:
In one embodiment, the present invention provides a method of treating a subterranean formation comprising providing a viscosified treatment fluid that comprises a base fluid and a gelling agent, providing a breaker composition that comprises an oxidizing breaker and a breaker activator that comprises a metal and a protein, allowing the viscosified treatment fluid to interact with the breaker composition, treating the subterranean formation with the viscosified treatment fluid, and allowing a viscosity of the viscosified treatment fluid to be reduced. Embodiments of the invention also provide methods of reducing the viscosity of a viscosified treatment fluids and methods of activating oxidizing breakers.
摘要:
Methods comprising: providing a treatment fluid that comprises a base fluid and a least a plurality of coated particulates, the coated particulates having been treated with a surface modification agent and coated with a hydrolysable coating; placing the treatment fluid into a subterranean formation via a well bore. Also provided are methods comprising: treating a particulate with a surface modification agent; coating the particulate with a hydrolysable coating that has an initial degradation rate to produce a coated particulate; placing the particulate in a subterranean formation; and allowing the hydrolysable coating to degrade at a second degradation rate that is slower than its initial degradation rate.
摘要:
Methods of treating subterranean zones and high density viscous aqueous treating fluids are provided. A high density viscous aqueous treating fluid of the invention comprises salt water comprising water and one or more oxidation resistant salts; a gelling agent; and a delayed oxidizing gel breaker.
摘要:
Corrosion inhibitor compositions may include certain combinations of the following components: a group 15 metal source, a cinnamaldehyde compound, an additional aldehyde compound, an acetylenic compound, a surfactant, an iodide source, and a solvent. Certain embodiments may omit one or more of these components. The inhibitor corrosion compositions may possess desirable environmental properties particularly for use in downhole environments. The corrosion inhibitor compositions herein do not require the presence of quaternary ammonium compounds or “Mannich” condensation compounds.
摘要:
A pair of optical gratings are used to modulate light from an object, and the modulated light from either grating is used to determine the velocity of the object. Each optical grating is offset from a reference focal point by the same distance, one grating being offset in a positive direction, the other in a negative direction. Signals produced in response to the modulated light can be processed to determine a direction in which a primary collection lens should be moved in order to improve a focus of the imaging system on the object. The lens is moved incrementally in the direction so determined, and the process is repeated until an optimal focus is achieved. In a preferred embodiment, the signals are weighted, so that the optical grating disposed closest to the optimal focus position contributes the most to velocity detection.
摘要:
The use of an imaging system, cell compartment markers, and molecular markers in methods for correlating the movement of molecules within a cell to a particular compartment are provided, including measuring and correlating molecule movement in adherent and non-adherent cells.
摘要:
A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.