摘要:
A process and apparatus are provided for converting oxygenate to olefins which comprises: contacting a feedstock comprising oxygenate with a catalyst comprising a molecular sieve under conditions effective to produce a vaporous product comprising the olefins, water and unreacted oxygenate; condensing the vaporous product to provide a liquid stream rich in the water and unreacted oxygenate, and an olefins-rich vapor stream; introducing at least part of the liquid stream to a feed tray in a fractionation tower which provides an oxygenate-rich overhead product and a water-rich liquid bottoms product; providing a liquid, oxygenate-rich stream comprising at least about 20 wt % oxygenate above the feed tray; and passing the olefins-rich vapor stream through a recovery train to recover at least some of the olefins.
摘要:
The present invention is directed to a hydrocarbon conversion apparatus and process. The apparatus comprises the following: a plurality of riser reactors, each having a first end into which a catalyst is fed, a second end through which the catalyst can exit, and optionally a center axis extending therebetween. The apparatus also includes a separation zone having a plurality of inlets, each inlet not being oriented along the center axes of the riser reactors, the separation zone being provided to separate the catalyst from products of a reaction conducted in the hydrocarbon conversion apparatus. A plurality of deviating members are also provided, each deviating member being in fluid communication between the second end of a respective riser reactor and a respective inlet of the separation zone. The apparatus also includes a catalyst retention zone provided to contain catalyst, which is fed to the riser reactors. A catalyst return is in fluid communication between the separation zone and the catalyst retention zone.
摘要:
The present invention provides a method for adding heat to a reactor system used to convert oxygenates to olefin, in which supplemental heat is added with a heating fuel, e.g., a torch oil, having low autoignition temperature, low sulfur, and low nitrogen content.
摘要:
The present invention provides various processes for selectively removing undesirably sized catalyst particles from a reaction system. In one embodiment, a plurality of catalyst particles, having a first median particle diameter, is withdrawn from the reaction system and is directed to a separation unit such as a counter flow cyclone separator. In the separation unit, the particles are separated into a small catalyst stream and a large catalyst stream, the small catalyst stream having a second median particle diameter less than the first median particle diameter, and the large catalyst stream having a third median particle diameter greater than the first median particle diameter. At least a portion of the small or large catalyst stream is then directed back to the reaction system in order to maintain a desirable particle size distribution therein.
摘要:
The present invention is directed to a hydrocarbon conversion apparatus. The apparatus comprises the following: a plurality of riser reactors, each of the riser reactors having a first end into which a catalyst can be fed and a second end through which the catalyst can exit the riser reactor, a separation zone into which the second ends of the riser reactors extend, the separation zone being provided to separate the catalyst from products of a reaction conducted in the hydrocarbon conversion apparatus; and at least one catalyst return in fluid communication with the separation zone and the first ends of the riser reactors, the catalyst return being provided to transfer the catalyst from the separation zone to the first ends of the riser reactors.
摘要:
The present invention provides a process for producing synthesis gas blends which are especially suitable for conversion either into oxygenates such as methanol or into Fischer-Tropsch liquids. Such a process involves reforming of two separate gaseous hydrocarbon feedstreams (formed, for example, by dividing a natural gas feedstock) in a steam-reforming unit and an oxygen-blown reforming unit, respectively. The syngas effluent from each reforming unit is then combined, after appropriate pressure adjustments, to realize a synthesis gas blend containing selected amounts and ratios of H2, CO and CO2. In further invention embodiments, processes are provided for converting the resulting syngas blends into oxygenates or Fischer-Tropsch hydrocarbons. Further conversion of the oxygenates so produced into light olefins also constitutes part of this invention.
摘要翻译:本发明提供了一种生产合成气共混物的方法,其特别适用于转化为含氧化合物如甲醇或费 - 托液体。 这种方法包括分别在蒸汽重整单元和氧气重整单元中重新分离两个单独的气态烃进料流(例如通过分配天然气原料形成)。 然后,在适当的压力调节之后,将来自每个重整单元的合成气流出物合并,以实现含有选定量的H 2 CO 2和CO 2 CO 2的比例的合成气共混物。 在进一步的发明实施方案中,提供了将所得合成气共混物转化为含氧化合物或费 - 托烃的方法。 将如此生产的含氧化合物进一步转化成轻质烯烃也构成本发明的一部分。
摘要:
The present invention is directed to a method and system for integrating a catalyst regeneration system with a plurality of hydrocarbon conversion apparatuses, preferably, a plurality of multiple riser reactor units. One embodiment of the present invention is a reactor system including a plurality of reactor units, at least one reactor unit preferably comprising a plurality of riser reactors. The system also includes a regenerator for converting an at least partially deactivated catalyst to a regenerated catalyst. A first conduit system transfers the at least partially deactivated catalyst from the reactor units to the regenerator, and a second conduit system transfers regenerating catalysts from the regenerator to the plurality of reactor units. Optionally, catalysts from a plurality of hydrocarbon conversion apparatuses may be directed to a single stripping unit and/or a single regeneration unit.
摘要:
This invention is directed to a process for producing methanol. The methanol product that is produced according to this invention is achieved with a high conversion of synthesis gas. The high conversion of synthesis gas is achieved by flowing a liquid layer across a plurality of catalyst beds countercurrent to the gas flow. The gas containing methanol product exiting each bed flows through the liquid layer. The liquid acts to extract methanol from the gas, as well as cool the gas.
摘要:
This invention provides processes for maintaining a desired particle size distribution in an oxygenate to olefin reaction system. In one embodiment, the invention comprises replacing lost catalyst fines with less active co-catalyst particles. By adding less active co-catalyst particles to the reaction system, desirable fluidization characteristics and hydrodynamics can be maintained without affecting the overall (or primary catalyst) performance and product selectivities. The invention is also directed to a population of catalyst particles having a desirable particle size distribution well-suited for realizing ideal fluidization and hydrodynamic characteristics.
摘要:
This invention is to a circulating fluid bed reactor that is designed so as to have the ability to adjust catalyst holdup within the reaction zone of the reactor while maintaining substantially constant catalyst circulation rate through the reaction zone. The ability to adjust catalyst hold up independently of catalyst circulation rate provides an advantage of having the ability to maintain a constant conversion level as catalyst activity or feed rates change.