摘要:
A transport tank with high capacity gas scrubbing includes a vertically extending interior wall horizontally dividing the transport tank into a gas scrubbing chamber and a fluid storage chamber. A floor grate is supported within the gas scrubbing chamber at vertically spaced distance from a bottom of the transport tank and defines a gas distribution space between the floor grate and the tank bottom. A gas distribution pipe is disposed within and longitudinally extends the gas distribution space. A gas inlet is fluidically connected to the gas distribution pipe and passes through an exterior wall of the transport tank. A gas scrubbing is material disposed within the gas scrubbing chamber above the floor grate. And a gas outlet is fluidically connected to the gas scrubbing chamber for venting scrubbed gases.
摘要:
A sub-micron, on the order of 80-nanometer diameter, resonant tunneling diode having a peak-to-valley ratio of approximately 5.1 to 1, and a method for its manufacture. The invention is unique in that its performance characteristics are unmatched in comparably sized resonant tunneling diodes. Further, the polyimide passivation and planarization methodology provides unexpected processing advantages with respect to application in the fabrication of resonant tunneling diodes. The invention includes a substrate 100 that serves as a foundation for bottom contact layers 102 and a polyimide 700 coating. An ohmic metal contact 300 and emitter metal contact 400 protrude above the polyimide 700 coating exposing the ohmic metal contact 300 and emitter metal contact 400. The contacts are capped with an etch-resistant coating 710 thus allowing for the polyimide etch, and other etching processes without adversely affecting the contacts.
摘要:
A semiconductor device and method are being disclosed. The semiconductor device discloses an InAs layer, a plurality of group III-V ternary layers supported by the InAs layer, and a plurality of group III-V quarternary layers supported by the InAs layer, wherein the group III-V ternary layers are separated from each other by a single group III-V quarternary layer. The method discloses providing an InAs layer, growing a plurality of group III-V ternary layers, and growing a plurality of group III-V quarternary layers, wherein the group III-V ternary layers are separated from each other by a single group III-V quarternary layer and are supported by the InAs layer.
摘要:
Material layer structures that have high mobility, a high conduction band barrier and materials that can be implanted to enable higher performance FET device. The structures contain a quantum well layer disposed between two barriers and disposed above a buffer layer and a substrate.
摘要:
A semiconductor device and method are being disclosed. The semiconductor device discloses an InAs layer, a plurality of group III-V ternary layers supported by the InAs layer, and a plurality of group III-V quarternary layers supported by the InAs layer, wherein the group III-V ternary layers are separated from each other by a single group III-V quarternary layer. The method discloses providing an InAs layer, growing a plurality of group III-V ternary layers, and growing a plurality of group III-V quarternary layers, wherein the group III-V ternary layers are separated from each other by a single group III-V quarternary layer and are supported by the InAs layer.
摘要:
Disclosed is a time delay generator 200 apparatus and method. The apparatus includes a time delay gate 212, a mixer 216 (a Gilbert cell circuit), and a current digital to analog converter 206. The mixer 216, comprised of first and second transistor differential pairs 218 and 220, receives an analog input signal 202 without a delay as well as a delayed input signal 210 produced by the time gate delay. The digital to analog converter regulates the relative current flow between a first control signal 232 and a second control signal 238, effectively altering the mixing of the undelayed input signal 208 and the delayed input signal 210 to generate a delayed output signal 214 with a time or phase delay substantially equal to the temporal delay represented by the digital signal input 204. The time delay generator exhibits reduced phase noise and a linear time delay response.
摘要:
A semiconductor device and method are being disclosed. The semiconductor device discloses an InAs layer, a plurality of group III-V ternary layers supported by the InAs layer, and a plurality of group III-V quarternary layers supported by the InAs layer, wherein the group III-V ternary layers are separated from each other by a single group III-V quarternary layer. The method discloses providing an InAs layer, growing a plurality of group III-V ternary layers, and growing a plurality of group III-V quarternary layers, wherein the group III-V ternary layers are separated from each other by a single group III-V quarternary layer and are supported by the InAs layer.
摘要:
Disclosed is a time delay generator 200 apparatus and method. The apparatus includes a time delay gate 212, a mixer 216 (a Gilbert cell circuit), and a current digital to analog converter 206. The mixer 216, comprised of first and second transistor differential pairs 218 and 220, receives an analog input signal 202 without a delay as well as a delayed input signal 210 produced by the time gate delay. The digital to analog converter regulates the relative current flow between a first control signal 232 and a second control signal 238, effectively altering the mixing of the undelayed input signal 208 and the delayed input signal 210 to generate a delayed output signal 214 with a time or phase delay substantially equal to the temporal delay represented by the digital signal input 204. The time delay generator exhibits reduced phase noise and a linear time delay response.