摘要:
An MIM capacitor using a high-permittivity dielectric film such as tantalum oxide. The MIM capacitor includes an upper electrode, a dielectric film, and a lower electrode. A second dielectric film and the dielectric film are formed between the upper electrode and the lower electrode, at the end of the MIM capacitor. The second dielectric film is formed to have an opening at the top of the lower electrode. The dielectric film abuts the lower electrode via the opening. The upper electrode is formed on the dielectric film. The upper electrode and the dielectric film are formed in such a manner as to embrace the opening entirely, and the second dielectric film and the lower electrode are formed so that the respective widths are the same as, or greater than, the widths of the upper electrode and the dielectric film.
摘要:
An MIM capacitor using a high-permittivity dielectric film such as tantalum oxide. The MIM capacitor includes an upper electrode, a dielectric film, and a lower electrode. A second dielectric film and the dielectric film are formed between the upper electrode and the lower electrode, at the end of the MIM capacitor. The second dielectric film is formed to have an opening at the top of the lower electrode. The dielectric film abuts the lower electrode via the opening. The upper electrode is formed on the dielectric film. The upper electrode and the dielectric film are formed in such a manner as to embrace the opening entirely, and the second dielectric film and the lower electrode are formed so that the respective widths are the same as, or greater than, the widths of the upper electrode and the dielectric film.
摘要:
A resistor R1 formed by forming a first resistor layer 5a of 20 nm thickness including a tantalum nitride film at a concentration of nitrogen of less than 30 at % and a second resistor layer of 5 nm thickness including a tantalum nitride film at a concentration of nitrogen of 30 at % or more successively by a reactive DC sputtering method using tantalum as a sputtering target material and using a gas mixture of argon and nitrogen as a sputtering gas, and then fabricating the first and the second resistor layers, in which the resistance change ratio of the resistor can be suppressed to less than 1% even when a thermal load is applied in the interconnection step, by the provision of the upper region at a concentration of nitrogen of 30 at % or more.
摘要:
The present invention provides an MIM capacitor using a high-k dielectric film preventing degradation of breakdown field strength of the MIM capacitor and suppressing the increase of the leakage current. The MIM capacitor comprises a first metal interconnect, a fabricated capacitance film, a fabricated upper electrode, and a third metal interconnect. The MIM capacitor is realized by forming an interlayer dielectric film comprising silicon oxide so as to cover the first metal interconnect, then forming a first opening in the interlayer dielectric film to a region corresponding to a via hole layer in the interlayer dielectric film just above the first metal interconnect so as not to expose the upper surface of the first metal interconnect, then forming a second opening to the inside of the first opening so as to expose the surface of the first metal interconnect and then forming a capacitance film and a third metal interconnect.
摘要:
A semiconductor device according to the present invention includes: a lower-surface oxidation preventing insulating film formed on a lower surface of a metal resistor element; an upper-surface oxidation preventing insulating film formed on an upper surface of the metal resistor element; and a side-surface oxidation preventing insulating film formed only near a side surface of the metal resistor element by performing anisotropic etching after being deposited on a whole surface of a wafer in a process separated from the lower-surface oxidation preventing insulating film and the upper-surface oxidation preventing insulating film. According to the present invention, it is possible to prevent the increase of the resistance value due to the oxidation of the metal resistor element and also to prevent the increase of the parasitic capacitance between metal wiring layers without complicating the fabrication process.
摘要:
A semiconductor device according to the present invention includes: a lower-surface oxidation preventing insulating film formed on a lower surface of a metal resistor element; an upper-surface oxidation preventing insulating film formed on an upper surface of the metal resistor element; and a side-surface oxidation preventing insulating film formed only near a side surface of the metal resistor element by performing anisotropic etching after being deposited on a whole surface of a wafer in a process separated from the lower-surface oxidation preventing insulating film and the upper-surface oxidation preventing insulating film. According to the present invention, it is possible to prevent the increase of the resistance value due to the oxidation of the metal resistor element and also to prevent the increase of the parasitic capacitance between metal wiring layers without complicating the fabrication process.
摘要:
A semiconductor device according to the present invention includes: a lower-surface oxidation preventing insulating film formed on a lower surface of a metal resistor element; an upper-surface oxidation preventing insulating film formed on an upper surface of the metal resistor element; and a side-surface oxidation preventing insulating film formed only near a side surface of the metal resistor element by performing anisotropic etching after being deposited on a whole surface of a wafer in a process separated from the lower-surface oxidation preventing insulating film and the upper-surface oxidation preventing insulating film. According to the present invention, it is possible to prevent the increase of the resistance value due to the oxidation of the metal resistor element and also to prevent the increase of the parasitic capacitance between metal wiring layers without complicating the fabrication process.
摘要:
A system includes a server to distribute one or more applications and an image processing apparatus communicable with the server. The server includes circuitry. The circuitry receives information relating to a device type of the image processing apparatus from the image processing apparatus. The circuitry changes, based on the received information relating to the device type, a part of a screen design relating to an application list screen. The circuitry transmits, to the image processing apparatus, information relating to the application list screen in which the part of the screen design is changed based on the information relating to the device type. The browser executes an application command for transmitting the information relating to the device type to the server. The browser displays the application list screen in which the part of the screen design is changed based on the information relating to the device type.
摘要:
A piezoelectric element includes a piezoelectric film disposed on a substrate and a pair of electrodes disposed in contact with the piezoelectric film and utilizing a bending mode. The piezoelectric film includes domains constituted of a tetragonal crystal and including an a-domain which is formed by a crystal having a (100) plane parallel to the film surface of the piezoelectric film, the a-domains include an A-domain having a normal axis of (001) plane substantially parallel to a principal bending direction of the piezoelectric film and a B-domain having a normal axis of (001) plane substantially perpendicular to the principal bending direction of the piezoelectric film, and the A-domains have a volume proportion larger than 50 vol % with respect to the sum of the volume of the A-domains and the volume of the B-domains.
摘要:
A disclosed information processing apparatus includes an information processing unit configured to operate as a daemon process; an information displaying unit configured to operate as a process different from the daemon process and display a screen relevant to the information processing unit; a first ending unit configured to end the information displaying unit due to a first factor; and a second ending unit configured to end the information displaying unit due to a second factor different from the first factor. The information displaying unit ends the information processing unit in the event of receiving a request to end from the first ending unit and the information displaying unit does not end the information processing unit in the event of receiving a request to end from the second ending unit.