摘要:
A compound semiconductor substrate manufacturing method suitable for manufacturing a compound semiconductor element having high electrical characteristics. The compound semiconductor substrate manufacturing method is a method for manufacturing a compound semiconductor substrate having pn junction, including an epitaxial growing process, a selective growing process and other discretionary processes after the epitaxial growing process. The highest temperatures in the selective growing process and other discretionary processes after the epitaxial growing process are lower than that in the epitaxial growing process prior to the selective growing process.
摘要:
A compound semiconductor substrate manufacturing method suitable for manufacturing a compound semiconductor element having high electrical characteristics. The compound semiconductor substrate manufacturing method is a method for manufacturing a compound semiconductor substrate having pn junction, including an epitaxial growing process, a selective growing process and other discretionary processes after the epitaxial growing process. The highest temperatures in the selective growing process and other discretionary processes after the epitaxial growing process are lower than that in the epitaxial growing process prior to the selective growing process.
摘要:
An InGaP buffer layer (3) is formed on a semi-insulating GaAs substrate (1) to a thickness of not less than 5 nm and not greater than 500 nm and an InAlAs layer (4) and an InGaAs channel layer (5) are grown thereon to form a heterostructure. An In segregation effect occurs at the time of forming the InGaP buffer layer (3), so that the region of the InGaP buffer layer (3) near the layer above becomes excessive in In. As a result, the composition of the surface of the InGaP buffer layer (3) becomes very close to the composition of InP, thereby suppressing occurrence of misfit dislocations that can result in degradation of the surface condition. Further, the surface condition of the InAlAs layer (4) and InGaAs channel layer (5) formed thereon can be made good.
摘要:
A compound semiconductor epitaxial substrate and a process for producing the same are provided. The compound semiconductor epitaxial substrate comprises a single crystal substrate, a lattice mismatch compound semiconductor layer and a stress compensation layer, wherein the lattice mismatch compound semiconductor layer and the stress compensation layer are disposed on the identical surface side of the single crystal substrate, there is no occurrence of lattice relaxation in the lattice mismatch compound semiconductor layer, as well as the stress compensation layer, and Ls representing the lattice constant of the single crystal substrate, Lm representing the lattice constant of the lattice mismatch compound semiconductor layer, and Lc representing the lattice constant of the stress compensation layer satisfy the formula (1a) or (1b). Lm Ls>Lc (2a)
摘要:
Disclosed is a method for producing a compound semiconductor epitaxial substrate having a pn junction by selective growth which is characterized by using a base substrate having an average residual strain of not more than 1.0×10−5.
摘要:
A compound semiconductor epitaxial substrate and a process for producing the same are provided. The compound semiconductor epitaxial substrate comprises a single crystal substrate, a lattice mismatch compound semiconductor layer and a stress compensation layer, wherein the lattice mismatch compound semiconductor layer and the stress compensation layer are disposed on the identical surface side of the single crystal substrate, there is no occurrence of lattice relaxation in the lattice mismatch compound semiconductor layer, as well as the stress compensation layer, and Ls representing the lattice constant of the single crystal substrate, Lm representing the lattice constant of the lattice mismatch compound semiconductor layer, and Lc representing the lattice constant of the stress compensation layer satisfy the formula (1a) or (1b). Lm Lm>Ls>Lc (2a)
摘要:
Disclosed is a method for producing a compound semiconductor epitaxial substrate having a pn junction by selective growth which is characterized by using a base substrate having an average residual strain of not more than 1.0×10−5.
摘要:
The present invention provides a method for manufacturing a compound semiconductor substrate. The method for manufacturing a compound semiconductor substrate comprises the steps of: (a) epitaxially growing a compound semiconductor functional layer 2 on a substrate 1, (b) bonding a support substrate 3 to the compound semiconductor functional layer 2, (c) polishing the substrate 1 and a part of the compound semiconductor functional layer 2 on the side which is in contact with the substrate 1, to remove them, (d) bonding a thermally conductive substrate 4 having a thermal conductivity higher than that of the substrate 1 to the exposed surface of the compound semiconductor functional layer 2 which is provided in the step (c) to obtain a multilayer substrate and (d) separating the support substrate 3 from the multilayer substrate.
摘要:
The present invention provides a semiconductor light emitting device and a method for manufacturing the same. The semiconductor device comprises (i) a semiconductor layer with convex portions in a shape selected from a cone and a truncated cone and (ii) electrodes, wherein in the case of the convex portions with the shape of the truncated cone, the convex portions has a height of from 0.05 to 5.0 μm and a bottom base diameter of from 0.05 to 2.0 μm; in case of the convex portions with the shape of the cone, the convex portions has a height of from 0.05 to 5.0 μm and a base diameter of from 0.05 to 2.0 μm. A method for manufacturing a semiconductor light emitting device comprising the steps of (a) growing a semiconductor layer on a substrate, (b) forming on the semiconductor layer a region having particles with an average particle diameter of 0.01 to 10 μm and a surface density of 2×106 to 2×1010 cm−2, and (c) dry-etching the semiconductor layer to form convex portions in the shape selected from a cone and a truncated corn.
摘要翻译:本发明提供一种半导体发光器件及其制造方法。 半导体器件包括(i)具有选自锥体和截头圆锥形状的凸部的半导体层和(ii)电极,其中在具有截头圆锥形状的凸部的情况下,凸部具有 高度为0.05〜5.0μm,底底直径为0.05〜2.0μm; 在具有锥形形状的凸部的情况下,凸部的高度为0.05〜5.0μm,基径为0.05〜2.0μm。 一种制造半导体发光器件的方法,包括以下步骤:(a)在衬底上生长半导体层,(b)在半导体层上形成具有平均粒径为0.01至10μm的颗粒的区域和表面密度 为2×10 6〜2×10 10 cm -2,(c)对半导体层进行干法蚀刻,形成选自圆锥体和截玉米的形状的凸部。
摘要:
The present invention provides a light emitting device. The light emitting device has a light distribution in which a light distribution I (θ, φ) obtained when light emitted from a chip of the light emitting device is directly measured is not dependent on a direction φ and is substantially represented by I (θ, φ)=I (θ). I (θ, φ) represents a light intensity distribution in a direction (θ, φ), θ represents an angle from a direction of a normal to a light extraction surface of the light emitting device (0≦θ≦90°), φ represents a rotation angle around the normal (0≦φ≦360°), and I (θ) represents a monotone decreasing function with which 0 is approached when θ=90° is satisfied. In the light emitting device, of a structural body constructing the chip of the light emitting device, with regard to a size of a portion of the structural body which is transparent to light emitted from a light emitting layer, a ratio (an aspect ratio) between the size in a lateral direction and the size in a thickness direction is not less than 5 and a structure having a light scattering function is provided on a surface of the light emitting device chip or in an interior of the transparent portion of the structural body.