Abstract:
The present invention provides an electrolyte solvent for batteries, which comprises fluoroethylene carbonate and linear ester solvent. Also, the present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte comprises fluoroethylene carbonate and linear ester solvent. The inventive electrolyte solvent can improve the battery safety without deteriorating the battery performance.
Abstract:
The present invention provides an electrolyte solvent for batteries, which comprises fluoroethylene carbonate and linear ester solvent. Also, the present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte comprises fluoroethylene carbonate and linear ester solvent. The inventive electrolyte solvent can improve the battery safety without deteriorating the battery performance.
Abstract:
The present invention provides an electrolyte solvent for batteries, which comprises fluoroethylene carbonate and linear ester solvent. Also, the present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte comprises fluoroethylene carbonate and linear ester solvent. The inventive electrolyte solvent can improve the battery safety without deteriorating the battery performance.
Abstract:
The present invention provides an electrolyte for lithium secondary batteries that allows the batteries to operate safely at a charging voltage up to 4.35V, wherein the electrolyte comprises a combination of a fluoroethylene carbonate compound and a linear ester compound as solvent. Also, the present invention provides a lithium secondary battery that can operate at a charging voltage up to 4.35V, which comprises a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte comprises fluoroethylene carbonate compound and linear ester compound as solvent.
Abstract:
Disclosed are primary materials, precursor materials and final materials as well as methods to prepare these materials. The final materials are mixed lithium transition metal oxides, useful as performance optimized cathode materials for rechargeable lithium batteries. The transition metal is a solid solution mixture of manganese, nickel and cobalt, M=(Mn1-uNiu)1-u-yCoy, with 0.2.
Abstract:
Disclosed is a battery casing, comprising one or more sub-layers as constitutional elements, wherein at least one region selected from the group consisting of a surface of the casing and the sub-layers of the casing is coated partially or totally with a metal having a grain size of 50 nm or less. A battery comprising the same casing is also disclosed. The casing efficiently inhibits degradation of the safety of a battery, caused by internal or external factors, and thus provides a battery with excellent safety.
Abstract:
Disclosed is a battery casing, comprising one or more sub-layers as constitutional elements, wherein at least one region selected from the group consisting of a surface of the casing and the sub-layers of the casing is coated partially or totally with a metal having a grain size of 50 nm or less. A battery comprising the same casing is also disclosed. The casing efficiently inhibits degradation of the safety of a battery, caused by internal or external factors, and thus provides a battery with excellent safety.
Abstract:
Disclosed is a method for preparing an electrochemical device, comprising the steps of: charging an electrochemical device using an electrode active material having a gas generation plateau potential in a charging period to an extent exceeding the plateau potential; and degassing the electrochemical device. An electrochemical device, which comprises an electrode active material having a gas generation plateau potential in a charging period, and is charged to an extent exceeding the plateau potential and then degassed, is also disclosed.
Abstract:
An image forming apparatus and a method of controlling the same which may prevent brokenness of data displayed on a display are provided. The image forming apparatus performs a read operation on data previously stored at a specific address of a storage unit of an LCD module or on data stored through a write operation. The image forming apparatus compares data acquired through the read operation and known data. If the data acquired through the read operation and the known data are different, the image forming apparatus adjusts a setup time of an enable signal to prevent brokenness of data due to incorrect timing of the enable signal.
Abstract:
A method for automatically detecting errors in machine translation using a parallel corpus includes analyzing morphemes of a target language sentence in the parallel corpus and a machine-translated target language sentence, corresponding to a source language sentence, to classify the morphemes into words; aligning by words and decoding, respectively, a group of the source language sentence and the machine-translated target language sentence, and a group of the source language sentence and the target language sentence in the parallel corpus; classifying by types errors in the machine-translated target language sentence by making a comparison, word by word, between the decoded target language sentence in the parallel corpus and the decoded machine-translated target language sentence; and computing error information in the machine-translated target language sentence by examining a frequency of occurrence of the classified error types.