摘要:
A liquid permeable metallic coating is utilized in conjunction with a fluorescence based optical sensor. The metallic coating is deposited directly on, and is in physical contact with, the sensing membrane. The metallic coating does not require an intervening substrate layer or other components. When light from a light source is shone through the substantially light transmissive substrate onto the sensing membrane, the metallic overcoating reflects back the excitation light as well as the fluorescence light generated by the sensor such that substantially no light reaches the sample where the light may be scattered and/or absorbed by the sample. Accordingly, the accuracy and repeatability of the sensor is improved while the cost and production times associated with manufacturing the sensor are minimized.
摘要:
A liquid permeable metallic coating is utilized in conjunction with a fluorescence based optical sensor. The metallic coating is deposited directly on, and is in physical contact with, the sensing membrane. The metallic coating does not require an intervening substrate layer or other components. When light from a light source is shone through the substantially light transmissive substrate onto the sensing membrane, the metallic overcoating reflects back the excitation light as well as the fluorescence light generated by the sensor such that substantially no light reaches the sample where the light may be scattered and/or absorbed by the sample. Accordingly, the accuracy and repeatability of the sensor is improved while the cost and production times associated with manufacturing the sensor are minimized.
摘要:
Provided is an optical sensor including a support and a detection layer, wherein the detection layer includes: (a) a luminescent material wherein the luminescence intensity of the luminescent material varies as the amount of an analyte varies; (b) a reflective material having a highly efficient reflectance of the wavelengths of excitation and of emission of the luminescent material; and (c) a polymeric binder to support and hold together the luminescent material and the reflective material. Such an optical sensor can be advantageously used in the detection of gaseous, ionic, and nonionic analytes in highly scattering samples. Also provided are methods for the manufacture of such optical sensors.
摘要:
A multiple single use optical sensor includes a series of continuous sensor stripes deposited on a substrate web. At least one sample chamber is adapted to extend transversely across a discrete portion of the series of sensor stripes to facilitate analysis of a sample disposed therein. The sample chamber may be moved, or additional sample chambers provided to enable subsequent measurements of additional samples at unused discrete portions of the sensor stripes. The continuous nature of the sensor stripes provides consistency along the lengths thereof to enable calibration data obtained from one discrete portion of the sensor stripes to be utilized for testing an unknown sample an other discrete portion of the sensor stripes. This advantageously eliminates the need for any particular discrete portion of the sensor stripes to be contacted by more than one sample, for improved sensor performance.
摘要:
A multiple single use optical sensor includes a series of continuous sensor stripes deposited on a substrate web. At least one sample chamber is adapted to extend transversely across a discrete portion of the series of sensor stripes to facilitate analysis of a sample disposed therein. The sample chamber may be moved, or additional sample chambers provided to enable subsequent measurements of additional samples at unused discrete portions of the sensor stripes. The continuous nature of the sensor stripes provides consistency along the lengths thereof to enable calibration data obtained from one discrete portion of the sensor stripes to be utilized for testing an unknown sample an other discrete portion of the sensor stripes. This advantageously eliminates the need for any particular discrete portion of the sensor stripes to be contacted by more than one sample, for improved sensor performance.
摘要:
A polymeric sensing membrane having a Stern-Volmer constant within a pre-determined range of Stern-Volmer constants. The membrane includes a polymeric material having a fluorescent dye molecule dispersed therein. The dye molecule is capable of having its fluorescence collisionally quenched by a gas to be detected by the membrane. In one embodiment, the membrane includes a fluorescent dye molecule which has a relaxation time and a polymeric material having a permeability within a range of permeabilities defined by a mathematical function of the pre-determined range of Stern-Volmer constants. In another embodiment, the membrane includes a polymeric having a permeability and a fluorescent dye molecule having a relaxation time within a range of relaxation times defined by a mathematical function of the pre-determined range of Stern-Volmer constants.
摘要:
A polymeric sensing membrane having a Stern-Volmer constant within a pre-determined range of Stern-Volmer constants. The membrane includes a polymeric material having a fluorescent dye molecule dispersed therein. The dye molecule is capable of having its fluorescence collisionally quenched by a gas to be detected by the membrane. In one embodiment, the membrane includes a fluorescent dye molecule which has a relaxation time and a polymeric material having a permeability within a range of permeabilities defined by a mathematical function of the pre-determined range of Stern-Volmer constants. In another embodiment, the membrane includes a polymeric having a permeability and a fluorescent dye molecule having a relaxation time within a range of relaxation times defined by a mathematical function of the pre-determined range of Stern-Volmer constants.
摘要:
A multiple single use optical sensor includes a series of continuous sensor stripes deposited on a substrate web. At least one sample chamber is adapted to extend transversely across a discrete portion of the series of sensor stripes to facilitate analysis of a sample disposed therein. The sample chamber may be moved, or additional sample chambers provided to enable subsequent measurements of additional samples at unused discrete portions of the sensor stripes. The continuous nature of the sensor stripes provides consistency along the lengths thereof to enable calibration data obtained from one discrete portion of the sensor stripes to be utilized for testing an unknown sample an other discrete portion of the sensor stripes. This advantageously eliminates the need for any particular discrete portion of the sensor stripes to be contacted by more than one sample, for improved sensor performance.
摘要:
Optical sensor formulations comprising polymeric sensing formulations and methods of predictably making optical sensor formulations, for, e.g., measuring O2 levels in patient blood samples. These formulations may be, e.g., deposited as a membrane on light-transmissive substrates. In an embodiment, O2-sensing formulations may be made by a process including selecting a first homopolymer comprised of first monomeric units, the first homopolymer having a first PermO2 value; selecting a second homopolymer comprised of second monomeric units, the second homopolymer having a second PermO2 value that is different from the first PermO2 value; and copolymerizing the first and second monomeric units to obtain a copolymer having an intermediate PermO2 value, i.e., between the two PermO2 values, the intermediate PermO2 providing the desired PermO2 for the desired oxygen sensing formulation. By adjusting the relative amounts of the first and second monomeric units, a series of polymers having a desired range of intermediate permeability values (and hence Stem-Volmer characteristic kSV values) may be obtained.
摘要:
The invention discloses enzyme-based optical sensors for detecting blood components which are substrates for oxidative enzymes, the sensors advantageously employing a multiple-layer structure featuring a thin, rapidly responding, optical, oxygen sensing layer. The sensors comprise, in order, a) an enzymatic layer containing an oxidative enzyme or enzyme cascade in a water and oxygen-permeable matrix; b) an oxygen sensing layer containing luminescent dye in a light-transmissive, oxygen-permeable matrix; and which is preferably deposited onto c) a light-transmissive substrate. Embodiments of the invention may further include a rapidly hydrating gas-permeable cover, or spacer, layer deposited over the enzymatic layer. A particulate filler material may be included in an effective amount in the oxygen sensing layer to reduce sample light scattering effects. The sensors of the disclosure may be used to detect creatinine and other enzyme-oxidizable analytes such as glucose, lactate or cholesterol, and may be made easily using standard coating techniques known in the art. These sensors are suitable for multiple analyses, but the materials and methods used allow the sensors to be disposable as well, allowing their wide use in medical and analytical applications.