摘要:
A programming method of a non-volatile memory device includes a pre-program of the non-volatile memory device, and a main-program of the pre-programmed non-volatile memory device. The non-volatile memory device may include a tunnel dielectric layer, a charge storage layer, a blocking dielectric layer, and a gate electrode, which are sequentially stacked on a semiconductor substrate. The charge storage layer may be an electrically-floated conductive layer, or a dielectric layer having a trap site. By performing a main-program after performing a pre-program, to increase the threshold voltage of the non-volatile memory device, the program current can be effectively reduced.
摘要:
A programming method of a non-volatile memory device includes a pre-program of the non-volatile memory device, and a main-program of the pre-programmed non-volatile memory device. The non-volatile memory device may include a tunnel dielectric layer, a charge storage layer, a blocking dielectric layer, and a gate electrode, which are sequentially stacked on a semiconductor substrate. The charge storage layer may be an electrically-floated conductive layer, or a dielectric layer having a trap site. By performing a main-program after performing a pre-program, to increase the threshold voltage of the non-volatile memory device, the program current can be effectively reduced.
摘要:
A nonvolatile memory cell array having common drain lines and method of operating the same are disclosed. A positive voltage is applied to a gate of a selected cell and gates of memory cells that share a word line with the selected cell. A first voltage is applied to a drain of the selected cell and drains of the memory cells that share at least a drain line with the selected cell. A second voltage is applied to a source of the selected cell and sources of memory cells that share a bit line with the selected cell, the second voltage being less than the first voltage, such that electrons are injected into the charge storage region of the selected cell to program. A third voltage, which is higher than the second voltage, is applied to bit lines that are not connected to the selected cell.
摘要:
A nonvolatile memory cell array having common drain lines and method of operating the same are disclosed. A positive voltage is applied to a gate of a selected cell and gates of memory cells that share a word line with the selected cell. A first voltage is applied to a drain of the selected cell and drains of the memory cells that share at least a drain line with the selected cell. A second voltage is applied to a source of the selected cell and sources of memory cells that share a bit line with the selected cell, the second voltage being less than the first voltage, such that electrons are injected into the charge storage region of the selected cell to program. A third voltage, which is higher than the second voltage, is applied to bit lines that are not connected to the selected cell.
摘要:
A nonvolatile memory cell employing a plurality of dielectric nanoclusters and a method of fabricating the same are disclosed. In one embodiment, the nonvolatile memory cell comprises a semiconductor substrate having a channel region. A control gate is disposed above the channel region. A control gate dielectric layer is disposed between the channel region and the control gate. A plurality of dielectric nanoclusters are disposed between the channel region and the control gate dielectric layer. Each nanocluster may be separated from adjacent nanoclusters by the control gate dielectric layer. A tunnel oxide layer is disposed between the plurality of dielectric nanoclusters and the channel region. Further, a source and a drain are formed in the semiconductor substrate.
摘要:
Methods of preparing improved semiconductor substrates having gate oxide layers formed thereon, and use of such substrates in fabricating improved semiconductor devices, are disclosed. The methods include a first step of performing a cleaning process for removing a natural oxide layer formed on a semiconductor substrate and also for removing an oxide layer generated by the removal of the natural oxide layer; a second step of executing a hydrogen annealing process to form a hydrogen passivation layer and for further reducing a surface roughness of the semiconductor substrate completed in the cleaning process; a third step of forming a gate oxide layer thereon; a fourth step of performing a nitridation process on the gate oxide layer to prevent the semiconductor substrate from a permeation of ions during a subsequent gate electrode formation step; and, a fifth step of performing a subsequent thermal process to stabilize a surface of the gate oxide layer, thereby improving a defect rate of the device caused in forming the gate oxide layer.