摘要:
Disclosed is an integrated thin film photovoltaic device. The integrated thin film photovoltaic device includes: a substrate including trenches formed therein; a first semiconductor material layer formed on the substrate from a first basic line within each of the trenches through one side of each of the trenches to the projected surface of the substrate, which is adjacent to the one side; a second semiconductor material layer formed on a resultant substrate from a second basic line on the first semiconductor material layer within each of the trenches through the other side of each of the trenches to the projected surface of the resultant substrate, which is adjacent to the other side, so that a portion of the first semiconductor material layer and a portion of the second semiconductor material layer are overlapped with each other within each of the trenches.
摘要:
The present invention relates to a material pattern, and mold using thereof, metal thin-film pattern, metal pattern, and method of forming the sames. A method of forming the material pattern according to the present invention comprises the steps of; (a) forming a photo-sensitive material film by coating a photo-sensitive material on a substrate; (b) deciding an exposure section on the photo-sensitive material film; (c) disposing a light refraction film and a light diffusion film at a route of light exposed on the photo-sensitive material film; and (d) forming a pattern on the photo-sensitive material film, by projecting a light on the exposure section of the photo-sensitive material film, wherein the light transmits the light refraction film and the light diffusion film.A method of forming the material pattern according to the present invention can form the material pattern of three-dimensional asymmetric structure having various inclinations and shapes and can form simply mold, metal thin-film and metal pattern using thereof.
摘要:
The present invention relates to a material pattern, and mold using thereof, metal thin-film pattern, metal pattern, and method of forming the sames. A method of forming the material pattern according to the present invention comprises the steps of; (a) forming a photo-sensitive material film by coating a photo-sensitive material on a substrate; (b) deciding an exposure section on the photo-sensitive material film; (c) disposing a light refraction film and a light diffusion film at a route of light exposed on the photo-sensitive material film; and (d) forming a pattern on the photo-sensitive material film, by projecting a light on the exposure section of the photo-sensitive material film, wherein the light transmits the light refraction film and the light diffusion film.A method of forming the material pattern according to the present invention can form the material pattern of three-dimensional asymmetric structure having various inclinations and shapes and can form simply mold, metal thin-film and metal pattern using thereof.
摘要:
A method of fabricating a polymer or resist pattern over a substrate includes coating a photosensitive polymer or resist over the substrate to form a polymer or resist layer, determining a portion of the polymer or resist layer to be exposed to light, placing a light adjusting layer in an optical path of light shone on the polymer or resist layer, and adjusting the light adjusting layer to adjust a direction or intensity of the light shone on the polymer or resist layer. Based on the method, it is easy to fabricate a polymer or resist pattern, a metal film pattern, metal pattern structure, and a polymer mold, each having three-dimensional structures with various slopes or shapes by adjusting a direction or intensity of incident light when performing a lithography process.
摘要:
Disclosed are a micromirror device made in a simple structure using interdigitated cantilevers and having two stable rotational states, and applications thereof. The micromirror device comprises: (a) a substrate; (b) at least two protruded support posts arranged protrudedly in two columns of left and right sides on the substrate and apart by a predetermined interval from each other; (c) multiple cantilevers formed in parallel with the substrate, each having one end attached at the upper end portion of the respective protruded support posts and made in a thin strip having an elastic restoring force, wherein the cantilevers adjacent to each other are arranged to be parallel and interdigitated; (d) mirror support posts coupled to upper portions of the other ends of the cantilevers; (e) a mirror attached on upper portions of the whole mirror support posts and supported by the mirror support posts; and (f) two electrodes formed at left and right sides on the substrate, for providing an electrostatic force to the mirror, wherein the micromirror device reflects light incident into the mirror in different directions from each other by using an electrostatic force due to a voltage applied between the electrodes and the mirror, and the elastic restoring force of the cantilevers. The micromirror device can drive the mirror in two directions and adjust a rotational angle of the mirror using the electrostatic force due to a potential difference between the electrodes and the mirror for reflecting incident light, and the elastic restoring force of the cantilevers.
摘要:
A projection display apparatus using a microlens array and a micromirror array comprises a substrate, multiple micromirror arrays and multiple microlens arrays. The substrate is disposed apart with a predetermined distance from a light source. The multiple micromirror arrays are disposed over the substrate to be assembled together to have a predetermined incidence angle with respect to the incident rays. The multiple microlens arrays are configured to correspond to the micromirror arrays. More specifically, a first microlens array is disposed in a predetermined region between the light source and the substrate and comprises multiple microlenses. A second microlens array is disposed in a light path of reflection rays reflected from the micromirrors.
摘要:
Provided is a display apparatus using a micromirror or an image display device. The display apparatus is designed to eliminate dark regions, usually formed by pixel partitions or black matrixes, display a high-quality image by increasing light usage efficiency, and improve the power consumption. A display apparatus using a microlens includes a micromirror array, a substrate, and a microlens array. The micromirror array includes a plurality of micromirrors arranged to reflect incident light rays from a light source. The substrate supports the micromirror array. The microlens array includes a plurality of microlenses disposed between the light source and the micromirror array to condense the incident light rays from the light source upon the micromirror array and correct a traveling path of reflected light rays from the micromirror array.
摘要:
Disclosed is a method for manufacturing a photovoltaic device. The method for manufacturing a photovoltaic device includes providing substrates having trenches formed therein, forming a first electrode layer, and forming an auxiliary electrode layer in areas between the trenches such that the auxiliary electrode layer is located on or under the first electrode layer, the auxiliary electrode layer having electrical resistance less than that of the first electrode layer, and contacting with a portion of an area of the first electrode layer, forming a photovoltaic layer on the first electrode layer or the auxiliary electrode layer, forming a second electrode layer by obliquely depositing a second conductive material on the photovoltaic layer, etching the photovoltaic layer formed in the trenches such that the first electrode layer or the auxiliary electrode layer are exposed and forming a conductive layer by obliquely depositing a third conductive material on the second electrode layer such that the second electrode layer and either the first electrode layer or the auxiliary electrode layer are electrically connected to each other within the trench, the first electrode layer or the auxiliary electrode layer formed in one area generating electricity from light, and the second electrode layer formed in another area generating electricity from light.
摘要:
A method of fabricating a polymer or resist pattern over a substrate includes coating a photosensitive polymer or resist over the substrate to form a polymer or resist layer, determining a portion of the polymer or resist layer to be exposed to light, placing a light adjusting layer in an optical path of light shone on the polymer or resist layer, and adjusting the light adjusting layer to adjust a direction or intensity of the light shone on the polymer or resist layer. Based on the method, it is easy to fabricate a polymer or resist pattern, a metal film pattern, metal pattern structure, and a polymer mold, each having three-dimensional structures with various slopes or shapes by adjusting a direction or intensity of incident light when performing a lithography process.
摘要:
Disclosed is a method for manufacturing a photovoltaic device. The method for manufacturing a photovoltaic device includes providing substrates having trenches formed therein, forming a first electrode layer, and forming an auxiliary electrode layer in areas between the trenches such that the auxiliary electrode layer is located on or under the first electrode layer, the auxiliary electrode layer having electrical resistance less than that of the first electrode layer, and contacting with a portion of an area of the first electrode layer, forming a photovoltaic layer on the first electrode layer or the auxiliary electrode layer, forming a second electrode layer by obliquely depositing a second conductive material on the photovoltaic layer, etching the photovoltaic layer formed in the trenches such that the first electrode layer or the auxiliary electrode layer are exposed and forming a conductive layer by obliquely depositing a third conductive material on the second electrode layer such that the second electrode layer and either the first electrode layer or the auxiliary electrode layer are electrically connected to each other within the trench, the first electrode layer or the auxiliary electrode layer formed in one area generating electricity from light, and the second electrode layer formed in another area generating electricity from light.