摘要:
Provided is a nonvolatile semiconductor device capable of performing writing operations of different resistance changes for memory cells having variable resistive elements whose resistive characteristics are changed by voltage applications, individually and simultaneously. The device includes: a load resistive characteristic variable circuit for each bit line connected commonly with the memory cells on the same column for selecting one of two load resistive characteristics according to a first writing operation where the resistive characteristics of the variable resistive element to be written transit from a low resistance state to a high resistance state or a second writing operation where they transit reversely; and a writing voltage pulse application circuit for applying a first voltage pulse in a first writing operation and a second voltage pulse in a second writing operation to the memory cells to be written through the load resistive characteristic variable circuits and the bit limes.
摘要:
The variable resistance element of the present invention is a variable resistance element having an electrode, the other electrode, and a metal oxide material sandwiched between the electrodes and having an electrical resistance, between the electrodes, changing reversibly in response to a voltage applied between the electrodes. The variable resistance element further includes, inside the metal oxide material, a low resistance material having a lower electrical resistance than the metal oxide material and being out of contact with at least either one of the electrodes. This makes it possible to reduce a forming voltage for providing a conductive section inside the metal oxide material, without causing a leakage current to increase.
摘要:
The variable resistance element of the present invention is a variable resistance element having an electrode, the other electrode, and a metal oxide material sandwiched between the electrodes and having an electrical resistance, between the electrodes, changing reversibly in response to a voltage applied between the electrodes. The variable resistance element further includes, inside the metal oxide material, a low resistance material having a lower electrical resistance than the metal oxide material and being out of contact with at least either one of the electrodes. This makes it possible to reduce a forming voltage for providing a conductive section inside the metal oxide material, without causing a leakage current to increase.
摘要:
Provided is a variable resistive element which performs high speed and low power consumption operation. The variable resistive element comprises a metal oxide layer between first and second electrodes wherein electrical resistance between the first and second electrodes reversibly changes in accordance with application of electrical stress across the first and second electrodes. The metal oxide layer has a filament, which is a current path where the density of a current flowing between the first and second electrodes locally increases. A portion including at least the vicinity of an interface between the certain electrode, which is one or both of the first and second electrodes, and the filament, on an interface between the certain electrode and the metal oxide layer is provided with an interface oxide which is an oxide of at least one element included in the certain electrode and different from the oxide of the metal oxide layer.
摘要:
Provided is a variable resistive element which performs high speed and low power consumption operation. The variable resistive element comprises a metal oxide layer between first and second electrodes wherein electrical resistance between the first and second electrodes reversibly changes in accordance with application of electrical stress across the first and second electrodes. The metal oxide layer has a filament, which is a current path where the density of a current flowing between the first and second electrodes locally increases. A portion including at least the vicinity of an interface between the certain electrode, which is one or both of the first and second electrodes, and the filament, on an interface between the certain electrode and the metal oxide layer is provided with an interface oxide which is an oxide of at least one element included in the certain electrode and different from the oxide of the metal oxide layer.
摘要:
Provided is a nonvolatile semiconductor device capable of performing writing operations of different resistance changes for memory cells having variable resistive elements whose resistive characteristics are changed by voltage applications, individually and simultaneously. The device comprises: a load resistive characteristic variable circuit for each bit line connected commonly with the memory cells on the same column for selecting one of two load resistive characteristics according to a first writing operation where the resistive characteristics of the variable resistive element to be written transit from a low resistance state to a high resistance state or a second writing operation where they transit reversely; and a writing voltage pulse application circuit for applying a first voltage pulse in a first writing operation and a second voltage pulse in a second writing operation to the memory cells to be written through the load resistive characteristic variable circuits and the bit limes.
摘要:
A nonvolatile semiconductor memory device comprises: a two terminal structured variable resistive element, wherein resistive characteristics defined by current-voltage characteristics at both ends transit between low and high resistance states stably by applying a voltage satisfying predetermined conditions to the both ends, a transition from the low resistance state to the high resistance state occurs by applying a voltage of a first polarity whose absolute value is at or higher than a first threshold voltage, and the reverse transition occurs by applying a voltage of a second polarity whose absolute value is at or higher than a second threshold voltage; a load circuit connected to the variable resistive element in series having an adjustable load resistance; and a voltage generation circuit for applying a voltage to both ends of a serial circuit; wherein the variable resistive element can transit between the states by adjusting a resistance of the load circuit.
摘要:
A nonvolatile semiconductor device is configured so that a load circuit applying voltage to a variable resistive element is provided electrically connecting in series to the variable resistive element, a load resistive characteristic of the load circuit can be switched between two different characteristics. The two load resistive characteristics are selectively switched depending on whether a resistive characteristic of the variable resistive element transits from low resistance state to high resistance state, or vice versa, voltage necessary for transition from one of the two resistive characteristics to the other is applied by applying writing voltage to a serial circuit of the variable resistive element and load circuit. After the resistive characteristic of the variable resistive element transits from one to the other, voltage applied to the variable resistive element does not allow a resistive characteristic to return from the other to one depending on the selected load resistive characteristic.
摘要:
A variable resistance element is configured to be provided with a perovskite-type oxide between a first electrode and a second electrode, of which electric resistance between the first electrode and the second electrode is changed by applying a voltage pulse of a predetermined polarity between the first electrode and the second electrode, and the variable resistance element has a resistance hysteresis characteristic, in which a changing rate of a resistance value is changed from positive to negative with respect to increase of a cumulative pulse applying time in the application of the voltage pulse. The voltage pulse is applied to the variable resistance element so that the cumulative pulse applying time is not longer than a specific cumulative pulse applying time, in which the changing rate of the, resistance value is changed from positive to negative with respect to increase of the cumulative pulse applying time in the resistance hysteresis characteristic.
摘要:
A variable resistance element is configured to be provided with a perovskite-type oxide between a first electrode and a second electrode, of which electric resistance between the first electrode and the second electrode is changed by applying a voltage pulse of a predetermined polarity between the first electrode and the second electrode, and the variable resistance element has a resistance hysteresis characteristic, in which a changing rate of a resistance value is changed from positive to negative with respect to increase of a cumulative pulse applying time in the application of the voltage pulse. The voltage pulse is applied to the variable resistance element so that the cumulative pulse applying time is not longer than a specific cumulative pulse applying time, in which the changing rate of the, resistance value is changed from positive to negative with respect to increase of the cumulative pulse applying time in the resistance hysteresis characteristic.