Abstract:
An electronic device having a liquid crystal shutter is disclosed. A liquid crystal shutter is provided in an area formed by expanding a liquid crystal display. The liquid crystal shutter includes a rear polarizer, a rear glass substrate, a segmented electrode, a liquid crystal, a counter electrode, a front glass substrate, a shutter aperture, and a front polarizer. A camera module is disposed behind the rear polarizer. A voltage applied to the segmented electrode can be controlled to visually expose or hide the lens of the camera module from a shutter aperture.
Abstract:
Provided is a nonvolatile semiconductor device capable of performing writing operations of different resistance changes for memory cells having variable resistive elements whose resistive characteristics are changed by voltage applications, individually and simultaneously. The device includes: a load resistive characteristic variable circuit for each bit line connected commonly with the memory cells on the same column for selecting one of two load resistive characteristics according to a first writing operation where the resistive characteristics of the variable resistive element to be written transit from a low resistance state to a high resistance state or a second writing operation where they transit reversely; and a writing voltage pulse application circuit for applying a first voltage pulse in a first writing operation and a second voltage pulse in a second writing operation to the memory cells to be written through the load resistive characteristic variable circuits and the bit limes.
Abstract:
A system, method, and computer-usable medium are presented for controlling viewing angle characteristics by performing a color palette gradation control of a liquid crystal display, such that adjustment effects on a viewing angle range are improved.
Abstract:
A semiconductor memory device (1) comprises a memory cell array (100) in which memory cells each have a variable resistance element and the memory cells in the same row are connected to a common word line and the memory cells in the same column are connected to a common bit line, wherein during a predetermined memory action, the voltage amplitude of the voltage pulse applied to an end of at least one of the selected word line and the selected bit line is adjusted based on the position of the selected memory cell in the memory cell array (100) so that the effective voltage amplitude of a voltage pulse applied to the variable resistance element of the selected memory cell to be programmed or erased falls within a certain range regardless of the position in the memory cell array (100).
Abstract:
In a semiconductor storage device with cross point type arrays of memory cells including variable resistor elements, a selected data line and unselected data lines are supplied with a row selecting potential and a row unselecting potential through a data line selecting transistor respectively, a selected bit line and unselected bit lines are supplied with a column selecting potential and a column unselecting potential through a bit line selecting transistor respectively. Data lines and bit lines are separately driven so that when the data line selecting transistor is higher in the current driving capability than the bit line selecting transistor, a second bias voltage between the row unselecting potential and column selecting potential is lower than a first bias voltage between the row selecting potential and column unselecting potential, in the opposite case, the first bias voltage is lower than the second voltage.
Abstract:
A system, method, and computer-usable medium are presented for controlling viewing angle characteristics by performing a color palette gradation control of a liquid crystal display, such that adjustment effects on a viewing angle range are improved.
Abstract:
There is provided an EPIR device which is excellent in mass productivity and high in practical utility.The EPIR device includes a lower electrode layer, a CMR thin film layer and an upper electrode layer which are laminated in this order on any of various substrates. A Pt polycrystal thin film 10 forming the lower electrode layer includes columnar Pt crystal grains 10A, 10B, 10C, . . . and over 90% of these crystal grains is oriented to a (1 1 1) face. Columnar PCMO crystal grain groups 20A, 20B, 20C, . . . are respectively locally grown epitaxially on the respective outermost surfaces of the Pt crystal grains 10A, 10B, 10C, . . . . Then, the crystal faces of the crystal grains included in the PCMO crystal grain groups 20A, 20B, 20C, . . . and vertical in the substrate surface normal direction are any one of (1 0 0)p, (1 1 0)p and (1 1 1)p planes.
Abstract:
Wireless noise is detected within a time period specifically held after a data packet is wirelessly communicated, where no data is purposefully wirelessly communicated during this time period. The time period may be an inter-frame space (IFS) period within which no data is to be wirelessly communicated, and that is a period waited for prior to accessing a wireless medium over which data is wirelessly communicated. One or more actions are performed to counteract the noise. The frequency at which a liquid crystal display is being driven may be decreased so that harmonics caused thereby that caused the noise are no longer within the wireless communication frequency range. An opposite-in-phase version of the noise may also or alternatively be combined with a signal when data is subsequently wirelessly received. The signal includes a data component and a noise component, the opposite-in-phase version of the noise canceling out the noise component.
Abstract:
An electronic device having a liquid crystal shutter is disclosed. A liquid crystal shutter is provided in an area formed by expanding a liquid crystal display. The liquid crystal shutter includes a rear polarizer, a rear glass substrate, a segmented electrode, a liquid crystal, a counter electrode, a front glass substrate, a shutter aperture, and a front polarizer. A camera module is disposed behind the rear polarizer. A voltage applied to the segmented electrode can be controlled to visually expose or hide the lens of the camera module from a shutter aperture.
Abstract:
A semiconductor memory device (1) comprises a memory cell array (100) in which memory cells each have a variable resistance element and the memory cells in the same row are connected to a common word line and the memory cells in the same column are connected to a common bit line, wherein during a predetermined memory action, the voltage amplitude of the voltage pulse applied to an end of at least one of the selected word line and the selected bit line is adjusted based on the position of the selected memory cell in the memory cell array (100) so that the effective voltage amplitude of a voltage pulse applied to the variable resistance element of the selected memory cell to be programmed or erased falls within a certain range regardless of the position in the memory cell array (100).