摘要:
A method of manufacturing a thin-film transistor according to an embodiment of the present invention includes the step of forming a gate insulator on a gate electrode. The gate insulator includes at least a first region being in contact with a hydrogenated amorphous silicon film, and a second region positioned below the first region. The first and second regions are deposited using a source gas including NH3, N2, and SiH4, and H2 gas or a mixture of H2 and He. The first region is deposited by setting the flow-rate ratio NH3/SiH4 in a range from 11 to 14 and the second region is deposited by setting the flow-rate ratio NH3/SiH4 to be equal to or less than 4. It is thus possible to provide a thin-film transistor having excellent characteristics and high reliability, a method of manufacturing the same, and a display device including the thin-film transistor mounted thereon.
摘要:
A method of manufacturing a thin-film transistor according to an embodiment of the present invention includes the step of forming a gate insulator on a gate electrode. The gate insulator includes at least a first region being in contact with a hydrogenated amorphous silicon film, and a second region positioned below the first region. The first and second regions are deposited using a source gas including NH3, N2, and SiH4, and H2 gas or a mixture of H2 and He. The first region is deposited by setting the flow-rate ratio NH3/SiH4 in a range from 11 to 14 and the second region is deposited by setting the flow-rate ratio NH3/SiH4 to be equal to or less than 4. It is thus possible to provide a thin-film transistor having excellent characteristics and high reliability, a method of manufacturing the same, and a display device including the thin-film transistor mounted thereon.
摘要:
An exemplary aspect of the present invention is a thin film transistor including: a gate electrode formed on a substrate; a gate insulating film that includes a nitride film and covers the gate electrode; and a semiconductor layer that is disposed to be opposed to the gate electrode with the gate insulating film interposed therebetween, and has a microcrystalline semiconductor layer formed in at least an interface in contact with the nitride film, in which the microcrystalline semiconductor layer contains oxygen at a concentration higher than that of contained nitrogen in at least the vicinity of the interface with the nitride film, the nitrogen being diffused from the nitride film.
摘要:
An exemplary aspect of the present invention is a thin film transistor including: a gate electrode formed on a substrate; a gate insulating film that includes a nitride film and covers the gate electrode; and a semiconductor layer that is disposed to be opposed to the gate electrode with the gate insulating film interposed therebetween, and has a microcrystalline semiconductor layer formed in at least an interface in contact with the nitride film, in which the microcrystalline semiconductor layer contains oxygen at a concentration higher than that of contained nitrogen in at least the vicinity of the interface with the nitride film, the nitrogen being diffused from the nitride film.
摘要:
A display device includes a metal conductive layer formed on a substrate, a transparent electrode film formed on the substrate and joined to the metal conductive layer and an interlayer insulating film isolating the metal conductive layer and the transparent conductive film. The metal conductive layer has a lower aluminum layer made of aluminum or aluminum alloy, an intermediate impurity containing layer made of aluminum or aluminum alloy containing impurities and formed on a substantially entire upper surface of the lower aluminum layer and an upper aluminum layer made of aluminum or aluminum alloy and formed on the intermediate impurity containing layer. In the interlayer insulating film and the upper aluminum layer, a contact hole penetrates therethrough and locally exposes the intermediate impurity containing layer, and the transparent electrode film is joined to the metal conductive layer in the intermediate impurity containing layer exposed from the contact hole.
摘要:
A display device includes a metal conductive layer formed on a substrate, a transparent electrode film formed on the substrate and joined to the metal conductive layer and an interlayer insulating film isolating the metal conductive layer and the transparent conductive film. The metal conductive layer has a lower aluminum layer made of aluminum or aluminum alloy, an intermediate impurity containing layer made of aluminum or aluminum alloy containing impurities and formed on a substantially entire upper surface of the lower aluminum layer and an upper aluminum layer made of aluminum or aluminum alloy and formed on the intermediate impurity containing layer. In the interlayer insulating film and the upper aluminum layer, a contact hole penetrates therethrough and locally exposes the intermediate impurity containing layer, and the transparent electrode film is joined to the metal conductive layer in the intermediate impurity containing layer exposed from the contact hole.
摘要:
It is an object to provide a technique to improve electric characteristics after a high-temperature treatment even when a high melting point metal barrier layer is not formed. A semiconductor device includes a gate electrode formed on a transparent insulation substrate, a semiconductor layer having a Si semiconductor active film and an ohmic low resistance Si film having an n-type conductivity, being formed in this order on the gate electrode with a gate insulation film interposed between the gate electrode and the semiconductor layer, and the source and drain electrodes directly connected to the semiconductor layer and containing at least aluminum (Al). At least nitrogen (N) is contained in a first region that is in the vicinity of an interface between a side surface of the SI semiconductor active film and the source and drain electrodes.
摘要:
In a liquid crystal display (10) having a curved display surface, long sides of pixel structures (11) are arranged along the curve direction (Y) of the display surface and on a side of counter substrate provided is a black matrix having a black matrix opening (41a) whose length in the curve direction (Y) is not longer than E−L {(T1/2)+(T2/2)+d}/R, assuming that the length of the display surface in the curve direction (Y) is L, the thickness of an array substrate is T1, the thickness of the counter substrate is T2, the size of the gap between the array substrate and the counter substrate is d, the radius of curvature of the curved display surface is R and the length of a long side of a pixel electrode (29) provided in each of the pixel structures (11) is E. It thereby becomes possible to suppress display unevenness resulting from positional misalignment of the two substrates due to curvature and provide a liquid crystal display achieving a high-quality display image.
摘要:
In a touch screen, the number of dummy column block region patterns is made smaller than the number of plurality of detection block region patterns. The plurality of detection block region pattern are obtained as a result of dividing a crossing region where a column direction wire bunch and a row direction wire bunch cross each other. The dummy column block region patterns are obtained as a result of dividing a crossing region where a dummy column direction wire bunch and a row direction wire bunch cross each other.
摘要:
It is an object to provide a technique to improve electric characteristics after a high-temperature treatment even when a high melting point metal barrier layer is not formed. A semiconductor device includes a gate electrode formed on a transparent insulation substrate, a semiconductor layer having a Si semiconductor active film and an ohmic low resistance Si film having an n-type conductivity, being formed in this order on the gate electrode with a gate insulation film interposed between the gate electrode and the semiconductor layer, and the source and drain electrodes directly connected to the semiconductor layer and containing at least aluminum (Al). At least nitrogen (N) is contained in a first region that is in the vicinity of an interface between a side surface of the SI semiconductor active film and the source and drain electrodes.