Abstract:
A diesel engine, includes: an exhaust gas recirculation device that recirculates an exhaust gas emitted from the diesel engine to an intake side of the diesel engine; an intake air amount sensor that measures an intake air amount of the diesel engine; a NOx measurement sensor that measures NOx contained in the exhaust gas emitted from the diesel engine; and a control device that obtains a correction value for correcting a measured value by the intake air amount sensor based on a difference between first information on NOx obtained based on information on a rotation speed of the diesel engine and information on a load and second information on NOx measured by the NOx measurement sensor to control the exhaust gas recirculation device based on the measured value by the intake air amount sensor corrected using the correction value.
Abstract:
An engine control system controls a work machine including an engine, a fuel injection device that injects fuel into the engine, and a hydraulic pump that is driven by the engine. The rotation state amount specification unit specifies a rotation state amount related to rotation of the engine. The injection amount determination unit determines a fuel injection amount by the fuel injection device based on the rotation state amount.
Abstract:
An engine control system controls a work machine including an engine, a fuel injection device that injects fuel into the engine, and a hydraulic pump that is driven by the engine. The rotation state amount specification unit specifies a rotation state amount related to rotation of the engine. The injection amount determination unit determines a fuel injection amount by the fuel injection device based on the rotation state amount.
Abstract:
An engine unit mounted to a vehicle frame, the engine unit includes: an engine; an engine support mechanism to be coupled to the vehicle frame, with at least one vibration absorbing mechanism disposed on each of both sides of the engine in an orthogonal direction to a crankshaft of the engine, to support the engine; an aftertreatment device to purify exhaust gas emitted from the engine; a base bracket provided to the engine support mechanism; and an upper bracket detachably fixed and mounted to the base bracket, the upper bracket supporting the aftertreatment device.
Abstract:
An engine unit mounted to a vehicle frame, the engine unit includes: an engine; an engine support mechanism to be coupled to the vehicle frame, with at least one vibration absorbing mechanism disposed on each of both sides of the engine in an orthogonal direction to a crankshaft of the engine, to support the engine; an aftertreatment device to purify exhaust gas emitted from the engine; a base bracket provided to the engine support mechanism; and an upper bracket detachably fixed and mounted to the base bracket, the upper bracket supporting the aftertreatment device.
Abstract:
An exhaust gas processing device includes a NOx detection sensor, a first catalyst provided to a first branch pipe, a second catalyst provided to a second branch pipe, a first pressure sensor and a second pressure sensor which are arranged on the upstream side of the first catalyst and the second catalyst and which detect pressures in the first branch pipe and the second branch pipe, and a control device that obtains flow rates of exhaust gas flowing through the first branch pipe and the second branch pipe based on detection values of the first pressure sensor and the second pressure sensor and obtains amounts of reducing agent to be given to the first catalyst and the second catalyst from the obtained flow rates and a concentration of NOx of the exhaust gas.
Abstract:
An exhaust gas processing device includes a NOx detection sensor, a first catalyst provided to a first branch pipe, a second catalyst provided to a second branch pipe, a first pressure sensor and a second pressure sensor which are arranged on the upstream side of the first catalyst and the second catalyst and which detect pressures in the first branch pipe and the second branch pipe, and a control device that obtains flow rates of exhaust gas flowing through the first branch pipe and the second branch pipe based on detection values of the first pressure sensor and the second pressure sensor and obtains amounts of reducing agent to be given to the first catalyst and the second catalyst from the obtained flow rates and a concentration of NOx of the exhaust gas.