Abstract:
The present invention relates to a test support method which is a means for predicting whether or not pathological complete response (pCR) will be attained when a preoperative chemotherapy with an anticancer drug is performed, the method using a sample (breast cancer tissue section) collected from a breast cancer patient to be subjected to the preoperative chemotherapy. The test support method includes: [1] the step of acquiring a fluorescence image of a breast cancer tissue section, which fluorescence image shows bright spots of fluorescent nanoparticles labeling one or more kinds of breast cancer-related proteins; [2] the step of acquiring at least one index relating to the expression level(s) of the breast cancer-related protein(s) on the basis of the bright spots of the fluorescence image; and [3] the step of acquiring information for predicting pCR by performing an analysis using the above-described at least one index.
Abstract:
An object of the present invention is to provide a non-clinical test method which allows for the quality control of experimental animals having a transplanted tumor site, such as tumor-bearing mice, or experimental animals having a lesion site other than a transplanted a tumor site, and which is characterized by including the step of identifying, using a specimen collected from such an experimental animal, the profile of a lesion site, for example, a transplanted tumor site, of the experimental animal, by a quantitative technique.
Abstract:
A tissue staining method which comprises: staining a tissue with a staining reagent wherein a biosubstance recognition site is bonded to particles carrying multiple fluorescent substances accumulated therein; in the stained tissue, counting fluorescent points or measuring fluorescent brightness; and evaluating the expression level of a biosubstance, which matches the biosubstance recognition site, in the aforesaid tissue on the basis of the number of the fluorescent points or fluorescent brightness that was measured.
Abstract:
A biological substance quantitation method includes the following. A fluorescent image is input, which represents an expression of a specific biological substance in a sample stained with a fluorescent substance by a fluorescent bright spot. A quantitative evaluation value of the fluorescent bright spot is calculated. A standard fluorescent image of a standard sample stained under a same condition as the sample and representing an expression of the biological substance in a standard sample, is input under a same condition as the fluorescent image. A quantitative evaluation value in the standard fluorescent image is calculated under a same condition as the fluorescent image. Based on a correlation between an expression amount of the biological substance in a standard sample measured in advance and the evaluation value in the standard fluorescent image, the evaluation value in the fluorescent image is converted to an expression amount of the biological substance in the sample.
Abstract:
The present invention provides a method capable of more accurately quantifying a biological material expressed on the cell membrane in pathological samples. The present invention is directed to a method for quantifying a biological material (target biological material) expressed on the cell membrane, the method including the steps of: (1a) immunostaining the target biological material with a fluorescent material; (1b) immunostaining another biological material (reference biological material) on the cell membrane with another fluorescent material; (2) using immunostaining images for the target and reference biological materials to identify the fluorescence signal corresponding to the target biological material and to measure the fluorescence signals corresponding to the target and reference biological materials; and (3) correcting the measured value of the fluorescence signal corresponding to the target biological material by a given method to quantify the expression level.
Abstract:
An object of the present invention is to provide: a staining agent for tissue staining which has an improved fluorescence signal evaluation accuracy; and a tissue staining kit comprising the staining agent. The staining agent for tissue staining contains, as a staining component, dye-resin particles comprising thermosetting resin particles and a fluorescent dye immobilized on the resin particles, wherein the resin particles contains a substituent having an electric charge opposite to that of the fluorescent dye and forms an ionic bond or a covalent bond with the fluorescent dye, and the dye-resin particles have a particle size variation coefficient of 15% or less.
Abstract:
An analysis device for an objective biological substance includes a generator, a divider, an analyzer, and a calculator. The generator generates a microscopic image of a tissue sample after staining. The divider divides the microscopic image into at least one section having a prescribed size. The analyzer analyzes a staining condition of the microscopic image for each section. The calculator calculates a prescribed statistic based on an analysis result by the analyzer.
Abstract:
[Problem ] Provided is a means for detecting and quantifying a biological substance of interest with an improved accuracy by inhibiting non-specific adsorption of fluorescent nanoparticles and thereby reducing the background noise in immunostaining with fluorescent nanoparticles. [Means for Solution] Immunostaining is carried out upon diluting fluorescent nanoparticles with a fluorescent nanoparticle diluent which contains 1 to 5% (W/W) of a protein having a molecular weight of 40,000 or higher (e,g., BSA) and 1 to 3% (W/W) of a protein having a molecular weight of less than 40,000 (eg ., casein) and, when casein is used as a low-molecular-weight protein, it is preferred that the κ-casein content in the casein is 10% (W/W) or less and the ratio of α-casein and β-casein (α-casein:β-casein) contained in the casein is 40:60 to 60:40 ( taking the total amount of α-casein and β-casein as 100).
Abstract:
Provided are: a phosphor-integrated nanoparticle labeling agent which is capable of yielding a sufficient signal intensity even when its final concentration in an immunofluorescent staining reaction system is low (e.g., 0.02 nM) and enables to obtain an immunofluorescently stained image with reduced noise by inhibiting non-specific adsorption of a probe biological substance and a label to substances other than a detection subject; and an immunostaining method using the same. The phosphor-integrated nanoparticle labeling agent is a set which includes: a probe biological substance 3, which is linked to a first binding group substance A via a first hydrophilic polymer-derived spacer 1 having a length of 30 Å to 1,000 Å and specifically binds to a biomolecule 2; and a phosphor-integrated nanoparticle 5, which has a second binding group substance B capable of specifically binding to the first binding group substance A.
Abstract:
For fluorescent nanoparticles having a zeta potential of −10 mV to −60 mV at pH 7.0 or a zeta potential of 0 mV to −10 mV in a buffer of pH 6.0 to 8.0, an appropriate electrical repulsive force can be generated between biomolecules that are generally negatively charged and the fluorescent nanoparticles. As a result, non-specific binding between the fluorescent nanoparticles and the biomolecules is surppressed and the fluorescent nanoparticles are specifically bound to a biomolecule to be stained through interaction stronger than the electrical repulsive force, so that the visibility of the specific biomolecule to be stained can be improved. Further, since an appropriate electrical repulsive force is also generated between the fluorescent nanoparticles themselves, aggregation of the fluorescent nanoparticles can be inhibited and the dispersibility in a staining solution can thereby be maintained.