摘要:
Dielectric compositions encompassing one or more poly(arylene ether) polymers are provided. The dielectric compositions have the repetitive structural unit: where n=1 to 200, Y and Ar are each a divalent arylene radical, Y derived from bisphenol compounds of general formula HO—Y—OH, Ar derived from difluoro diarylacetylenes and/or ethynylated benzophenones of general formula F—Ar—F and Z is optionally hydrogen, a methyl group or derived from a monofluoro-benzophenone derivative of general formula Z—F. Such poly(arylene ether) polymers are employed with a variety of microelectronic devices, for example, integrated circuits and multichip modules.
摘要:
Dielectric compositions encompassing one or more poly(arylene ether) polymers are provided. The dielectric compositions have the repetitive structural unit: ##STR1## where n=0 to 1; m=0 to 1-n; and Y.sub.1, Y.sub.2, Ar.sub.1 and Ar.sub.2 are each a divalent arylene radical, Y.sub.1 and Y.sub.2 derived from biphenol compounds, Ar.sub.1 derived from difluoroarylethynes and Ar.sub.2 derived from difluoroaryl compounds. Where both Y.sub.1 and Y.sub.2 are derived from fluorene bisphenol, n=0.1 to 1. Such poly(arylene ether) polymers are employed with a variety of microelectronic devices, for example, integrated circuits and multichip modules.
摘要:
In a method of producing a low dielectric constant polymer, a thermosetting monomer is provided, wherein the thermosetting monomer has a cage compound or aryl core structure, and a plurality of arms that are covalently bound to the cage compound or core structure. In a subsequent step, the thermosetting monomer is incorporated into a polymer to form the low dielectric constant polymer, wherein the incorporation into the polymer comprises a chemical reaction of a triple bond that is located in at least one of the arms. Contemplated cage compounds and core structures include adamantane, diamantane, silicon, a phenyl group and a sexiphenylene group, while preferred arms include an arylene, a branched arylene, and an arylene ether. The thermosetting monomers may advantageously be employed to produce low-k dielectric material in electronic devices, and the dielectric constant of the polymer can be controlled by varying the overall length of the arms.
摘要:
In a method of producing a low dielectric constant polymer, a thermosetting monomer is provided, wherein the thermosetting monomer has a cage compound or aryl core structure, and a plurality of arms that are covalently bound to the cage compound or core structure. In a subsequent step, the thermosetting monomer is incorporated into a polymer to form the low dielectric constant polymer, wherein the incorporation into the polymer comprises a chemical reaction of a triple bond that is located in at least one of the arms. Contemplated cage compounds and core structures include adamantane, diamantane, silicon, a phenyl group and a sexiphenylene group, while preferred arms include an arlyene, a branched arylene, and an arylene ether. The thermosetting monomers may advantageously be employed to produce low-k dielectric material in electronic devices, and the dielectric constant of the polymer can be controlled by varying the overall length of the arms.
摘要:
The present invention is directed to low dielectric polymers and to methods of producing these low dielectric constant polymers, dielectric materials and layers, and electronic components. In one aspect of the present invention, an isomeric mixture of thermosetting monomers, wherein the monomers have a core structure and a plurality of arms, is provided, and the isomeric mixture of thermosetting monomers is polymerized, wherein polymerization comprises a reaction of an ethynyl group that is located in at least one arm of a monomer. In yet another aspect of the inventive subject matter, spin-on low dielectric constant materials are formed having a first backbone with an aromatic moiety and a first reactive group, and a second backbone with an aromatic moiety and a second reactive group, wherein the first and second backbone are crosslinked via the first and second reactive groups in a crosslinking reaction preferably without an additional crosslinker, and wherein a cage structure having at least eight (8) atoms is covalently bound to at least one of the first and second backbone.
摘要:
A low dielectric constant material has a first backbone with an aromatic moiety and a first reactive group, and a second backbone with an aromatic moiety and a second reactive group, wherein the first and second backbones are crosslinked via the first and second reactive groups in a crosslinking reaction without an additional crosslinker, and wherein a cage structure having at least 10 atoms is covalently bound to at least one of the first and second backbone.
摘要:
A low dielectric constant material has a polymeric network that is fabricated from a first and a second component. The first component comprises a polymeric strand, and the second component comprises a molecule having a central portion with at least three arms extending from the central portion, wherein each of the arms includes a backbone with a reactive group. The first component and the second component form the polymeric network in a reaction that involves at least one of the reactive groups when the first and second components are thermally activated. Contemplated low dielectric constant materials are advantageously employed in the fabrication of electronic devices, and particularly contemplated devices include integrated circuits.
摘要:
A low dielectric constant material has a polymeric network that is fabricated from a first and a second component. The first component comprises a polymeric strand, and the second component comprises a molecule having a central portion with at least three arms extending from the central portion, wherein each of the arms includes a backbone with a reactive group. The first component and the second component form the polymeric network in a reaction that involves at least one of the reactive groups when the first and second components are thermally activated. Contemplated low dielectric constant materials are advantageously employed in the fabrication of electronic devices, and particularly contemplated devices include integrated circuits.
摘要:
A low dielectric constant material has a first backbone with an aromatic moiety and a first reactive group, and a second backbone with an aromatic moiety and a second reactive group, wherein the first and second backbones are crosslinked via the first and second reactive groups in a crosslinking reaction without an additional crosslinker, and wherein a cage structure having at least 10 atoms is covalently bound to at least one of the first and second backbone.
摘要:
In a method of producing a low dielectric constant polymer, a thermosetting monomer is provided, wherein the thermosetting monomer has a cage compound or aryl core structure, and a plurality of arms that are covalently bound to the cage compound or core structure. In a subsequent step, the thermosetting monomer is incorporated into a polymer to form the low dielectric constant polymer, wherein the incorporation into the polymer comprises a chemical reaction of a triple bond that is located in at least one of the arms. Contemplated cage compounds and core structures include adamantane, diamantane, silicon, a phenyl group and a sexiphenylene group, while preferred arms include an arylene, a branched arylene, and an arylene ether. The thermosetting monomers may advantageously be employed to produce low-k dielectric material in electronic devices, and the dielectric constant of the polymer can be controlled by varying the overall length of the arms.