摘要:
A semiconductor apparatus includes a first tank configured to accommodate a first fluid. A second tank is configured to receive overflow of the first fluid into an upper portion of the second tank and to accommodate a second fluid. A cycling system including a first conduit is configured between the first tank and the second tank. The first conduit has an end substantially below a surface of the second fluid. A fluid providing system including a second conduit is fluidly coupled to the second tank and configured to provide the second fluid into the second tank. The second conduit has an end substantially below the surface of the second fluid. An overflow system is coupled to the second tank and configured to remove an upper portion of the second fluid when the surface of the second fluid is substantially equal to or higher than a pre-determined level.
摘要:
A semiconductor apparatus includes a first tank configured to accommodate a first fluid. A second tank is configured to receive overflow of the first fluid into an upper portion of the second tank and to accommodate a second fluid. A cycling system including a first conduit is configured between the first tank and the second tank. The first conduit has an end substantially below a surface of the second fluid. A fluid providing system including a second conduit is fluidly coupled to the second tank and configured to provide the second fluid into the second tank. The second conduit has an end substantially below the surface of the second fluid. An overflow system is coupled to the second tank and configured to remove an upper portion of the second fluid when the surface of the second fluid is substantially equal to or higher than a pre-determined level.
摘要:
The present disclosure includes a sulfur-carbon nanotube composite comprising a sheet of carbon nanotubes and sulfur nucleated upon the carbon nanotubes, and methods for synthesizing the same. In some embodiments, the sulfur-carbon composite may further be binder-free and include a sheet of carbon nanotubes, rendering a binder and a current collector unnecessary. In other embodiments of the present disclosure, a cathode comprising the sulfur-carbon nanotube composite is disclosed. In additional embodiments of the present disclosure, batteries may include the cathodes described herein. Those batteries may achieve high rate capabilities.
摘要:
The present disclosure relates to an electrochemical cell including an anode, a sulfur-containing cathode, a lithium-ion-containing electrolyte, and a porous carbon interlayer disposed between the anode and the cathode. The interlayer may be permeable to the electrolyte. The interlayer may be formed from a multiwall carbon nanotube (MWCNT) or a microporous carbon paper (MCP).
摘要:
An etchant for removing a porous low-k dielectric layer on a semiconductor substrate includes a hydrofluoric acid-based solvent, a dilating additive for dilating the pores in the porous low-k dielectric, and a passivating additive that forms a passivation layer at the interface between the low-k dielectric layer and the semiconductor substrate.
摘要:
By exposing a process control wafer having a porous low-k-dielectric layer thereon in an HF-based low-k dielectric etching solvent comprising a dilating additive and a passivating additive, the pores in the low-k dielectric layer are dilated some of which connect with one another to form one or more continuous channels extending through the thickness of the dielectric layer and allowing the HF-based solvent to reach down to the substrate. Then the passivating additive component of the HF-based etching solvent forms a passivation layer at the dielectric layer and the substrate interface that protects substrate from the HF-based etchant.
摘要:
By exposing a process control wafer having a porous low-k-dielectric layer thereon in an HF-based low-k dielectric etching solvent comprising a dilating additive and a passivating additive, the pores in the low-k dielectric layer are dilated some of which connect with one another to form one or more continuous channels extending through the thickness of the dielectric layer and allowing the HF-based solvent to reach down to the substrate. Then the passivating additive component of the HF-based etching solvent forms a passivation layer at the dielectric layer and the substrate interface that protects substrate from the HF-based etchant.
摘要:
Provided is a rope-shape alkali metal-sulfur battery having (a) a first electrode comprising a conductive porous rod and a mixture of a first electrode active material and a first electrolyte residing in pores of the first porous rod; (b) a porous separator wrapping around the first electrode to form a separator-protected first electrode; (c) a second electrode comprising a conductive porous rod having a mixture of a second electrode active material and a second electrolyte residing in pores of the second porous rod; wherein the separator-protected first electrode and the second electrode are combined to form a braid or a yarn; and (d) a protective sheath encasing the braid or yarn; wherein either the first or the second electrode is a cathode containing sulfur or a sulfur compound as a cathode active material and the battery has a rope shape having a length-to-diameter aspect ratio no less than 5.
摘要:
The present disclosure relates to an electrochemical cell including an anode, a sulfur-containing cathode, a lithium-ion-containing electrolyte, and a porous carbon interlayer disposed between the anode and the cathode. The interlayer may be permeable to the electrolyte. The interlayer may be formed from a multiwall carbon nanotube (MWCNT) or a microporous carbon paper (MCP).
摘要:
This disclosure relates to a method of synthesizing a sulfur-carbon composite comprising forming an aqueous solution of a sulfur-based ion and carbon source, adding an acid to the aqueous solution such that the sulfur-based ion nucleates as sulfur upon the surface of the carbon source; and forming an electrically conductive network from the carbon source. The sulfur-carbon composite includes the electrically conductive network with nucleated sulfur. It also relates to a sulfur-carbon composite comprising a carbon-based material, configured such that the carbon-based material creates an electrically conductive network and a plurality of sulfur granules in electrical communication with the electrically conductive network, and configured such that the sulfur granules are reversibly reactive with alkali metal. It further relates to batteries comprising a cathode comprising such a carbon-based material along with an anode and an electrolyte.