摘要:
The present invention relates to an acrylamide compound of Formula I, or an isomer, pharmaceutically acceptable salt and solvate thereof, to a composition comprising the compound or an isomer, pharmaceutically acceptable salt and solvate thereof, and a pharmaceutically acceptable carrier, excipient or diluent, and to a use of the compound or the composition for prophylaxis and/or treatment of a disease or disorder associated with cardiomyocyte apoptosis
摘要:
The present invention relates to a compound of Formula I, or an isomer, pharmaceutically acceptable salt and solvate of the compound, and to a composition comprising the compound of Formula I, or the isomer, pharmaceutically acceptable salt and solvate thereof, and a pharmaceutically acceptable carrier, excipient or diluents. The present invention also relates to use of the compound of Formula I, or the isomer, pharmaceutically acceptable salt and solvate thereof for combating apoptosis, preventing or treating a disease or disorder associated with apoptosis; and especially use for protecting cardiomyocyte, and for preventing or treating a disease or disorder associated with cardiomyocyte apoptosis.
摘要:
The present invention relates to an acrylamide compound of Formula I, or an isomer, pharmaceutically acceptable salt and solvate thereof, to a composition comprising the compound or an isomer, pharmaceutically acceptable salt and solvate thereof, and a pharmaceutically acceptable carrier, excipient or diluent, and to a use of the compound or the composition for prophylaxis and/or treatment of a disease or disorder associated with cardiomyocyte apoptosis.
摘要:
The present invention relates to a compound of Formula I, or an isomer, pharmaceutically acceptable salt and solvate of the compound, and to a composition comprising the compound of Formula I, or the isomer, pharmaceutically acceptable salt and solvate thereof, and a pharmaceutically acceptable carrier, excipient or diluents. The present invention also relates to use of the compound of Formula I, or the isomer, pharmaceutically acceptable salt and solvate thereof for combating apoptosis, preventing or treating a disease or disorder associated with apoptosis; and especially use for protecting cardiomyocyte, and for preventing or treating a disease or disorder associated with cardiomyocyte apoptosis.
摘要:
System and method for and identifying nerves innervating the wall of arteries such as the renal artery are disclosed. The present invention identifies areas on vessel walls that are innervated with nerves; provides indication on whether energy is delivered accurately to a targeted nerve; and provides immediate post-procedural assessment of the effect of energy delivered to the nerve. The method includes at least the steps to evaluate a change in physiological parameters after energy is delivered to an arterial wall; and to determine the type of nerve that the energy was directed to (none, sympathetic or parasympathetic) based on the evaluated results. The system includes at least a device for delivering energy to the wall of blood vessel; sensors for detecting physiological signals from a subject; and indicators to display results obtained using said method. Also provided are catheters for performing the mapping and ablating functions.
摘要:
Systems, methods, and computer readable media for maintaining packet data protocol (PDP) context while performing data offload are disclosed. According to one aspect, a method for maintaining PDP context while performing data offload includes detecting a data offload condition wherein a UE for which a first network node is maintaining a PDP context is sending or receiving data using a data path that does not include the first network node. While the data offload condition exists, packets are sent from a source other than the UE to the first network node so as to cause the first network node to maintain the PDP context for the UE. In one embodiment, a node interposed between the UE and the first network node periodically sends dummy packets or heart beat packets to the first network node on behalf of the UE, which may include packets that appear to come from the UE.
摘要:
Face verification is performed using video data. The two main modules are face image capturing and face verification. In face image capturing, good frontal face images are captured from input video data. A frontal face quality score discriminates between frontal and profile faces. In face verification, a local binary pattern histogram is selected as the facial feature descriptor for its high discriminative power and computational efficiency. Chi-Square (χ2) distance between LBP histograms from two face images are then calculated as a face dissimilarity measure. The decision whether or not two images belong to the same person is then made by comparing the corresponding distance with a pre-defined threshold. Given the fact that more than one face images can be captured per person from video data, several feature based and decision based aggregators are applied to combine pair-wise distances to further improve the verification performance.
摘要:
Automatic face recognition. In a first example embodiment, a method for automatic face recognition includes several acts. First, a face pattern and two eye patterns are detected. Then, the face pattern is normalized. Next, the normalized face pattern is transformed into a normalized face feature vector of Gabor feature representations. Then, a difference image vector is calculated. Next, the difference image vector is projected to a lower-dimensional intra-subject subspace extracted from a pre-collected training face database. Then, a square function is applied to each component of the projection. Next, a weighted summation of the squared projection is calculated. Then, the previous four acts are repeated for each normalized gallery image feature vector. Finally, the face pattern in the probe digital image is classified as belonging to the gallery image with the highest calculated weighted summation where the highest calculated weighted summation is above a predefined threshold.
摘要:
An input image (e.g. a digital RGB color image) is subjected to an eye classifier that is targeted at discriminating a complete eye pattern from any non-eye patterns. The red-eye candidate list with associated bounding boxes that are generated by the red-eye classifier are received. The bounding rectangles are subjected to object segmentation. A connected component labeling procedure is then applied to obtain one or more red regions. The largest red region is then chosen for feature extraction. A number of features are then extracted from this region. Then these features are used to determine if the particular candidate red-eye object is a mouth.