摘要:
A BCC phase hydrogen storage alloy capable of storing approximately 4.0 wt. % hydrogen and delivering reversibly up to 3.0 wt. % hydrogen at temperatures up to 110° C. The hydrogen storage alloys also possess excellent kinetics whereby up to 80% of the hydrogen storage capacity of the hydrogen storage alloy may be reached in 30 seconds and 80% of the total hydrogen storage capacity may be desorbed from the hydrogen storage alloy in 90 seconds. The hydrogen storage alloys also have excellent stability which provides for long cycle life.
摘要:
A BCC phase hydrogen storage alloy capable of storing approximately 4.0 wt. % hydrogen and delivering reversibly up to 3.0 wt. % hydrogen at temperatures up to 110° C. The hydrogen storage alloys also possess excellent kinetics whereby up to 80% of the hydrogen storage capacity of the hydrogen storage alloy may be reached in 30 seconds and 80% of the total hydrogen storage capacity may be desorbed from the hydrogen storage alloy in 90 seconds. The hydrogen storage alloys also have excellent stability which provides for long cycle life.
摘要:
A modified A2B7 type hydrogen storage alloy having reduced hysteresis. The alloy consists of a base AxBy hydrogen storage alloy, where A includes at least one rare earth element and also includes magnesium, B includes at least nickel, and the atomic ratio of x to y is between 1:2 and 1:5. The base alloy is modified by the addition of at least one modifier element which has an atomic volume less than about 8 cm3/mole, and is added to the base alloy in an amount sufficient to reduce the absorption/desorption hysteresis of the alloy by at least 10% when compared with the base alloy.
摘要翻译:具有降低的滞后的改性的A 2 N 2 B 7型储氢合金。 该合金由一种碱金属的储氢合金组成,其中A包括至少一种稀土元素,并且还包括镁,B至少包括镍,和 x与y的原子比为1:2与1:5之间。 通过添加至少一种具有小于约8cm 3 / mole的原子体积的改性剂元素来改变基础合金,并且以足以减少吸收的量加入到基础合金中 /解吸滞后与基础合金相比至少10%。
摘要:
A hydrogen storage alloy having an atomically engineered microstructure that both physically and chemically absorbs hydrogen. The atomically engineered microstructure has a predominant volume of a first microstructure which provides for chemically absorbed hydrogen and a volume of a second microstructure which provides for physically absorbed hydrogen. The volume of the second microstructure may be at least 5 volume % of atomically engineered microstructure. The atomically engineered microstructure may include porous micro-tubes in which the porosity of the micro-tubes physically absorbs hydrogen. The micro-tubes may be at least 5 volume % of the atomically engineered microstructure. The micro-tubes may provide proton conduction channels within the bulk of the hydrogen storage alloy and the proton conduction channels may be at least 5 volume % of the atomically engineered microstructure.
摘要:
A hydrogen storage composite material having a Mg—Ni based alloy with a coating of a catalytically active metal deposited on at least a portion of a surface of said Mg—Ni based alloy. The coating is less than about 200 angstroms thick and preferably is formed from iron or palladium. The composite material is capable of adsorbing at least 3 weight percent hydrogen and desorbing at least 1 weight percent hydrogen at 30° C. The Mg—Ni based alloy has a microstructure including both a Mg-rich phase and a Ni-rich phase, micro-tubes having an inner core of Ni-rich material surrounded by a sheathing of Mg-rich material, amorphous structural regions and microcrystalline structural regions.
摘要:
A fuel cell. The anode of the fuel cell comprises a hydrogen oxidation catalyst comprising a finely divided metal particulate. The metal particulate may be a nickel and/or nickel alloy particulate having a particle size less than about 100 Angstroms.
摘要:
An industrial catalyst having: a support; a plurality of metallic particulates distributed throughout the support; and a metal at least partially covering the surface of the support. A method for making a catalyst including the steps of: forming a support with non-noble metal particulates distributed throughout the support; and at least partially covering the surface of the support with a metal.
摘要:
A method of making a catalyst. The method comprises the step of leaching a portion of the bulk of an alloy. The alloy may be a hydrogen storage alloy.
摘要:
A method of making a catalyst. The method comprises the step of leaching alloy particles. Preferably, the alloy particles are hydrogen storage alloy particles.
摘要:
A low temperature alkaline fuel cell having a hydrogen electrode and an oxygen electrode, both of which are comprised of high performance non-precious metal catalytic materials providing high performance at low temperatures.