摘要:
The present disclosure relates to detection of light (or radiation) at different wavelengths. A voltage-tunable multi-color infrared (IR) detector element receives incident radiation through a substantially-transparent substrate. Side surfaces of the voltage-tunable multi-color IR detector element reflect the incident radiation, thereby redirecting the radiation. The reflected radiation is directed through a voltage-tunable multi-color infrared (IR) detector. Energy proportional to different ranges of wavelengths is detected by supplying different bias voltages across the voltage-tunable multi-color IR detector element.
摘要:
A quantum grid infrared photodetector (QGIP) includes a semiconductor substrate with a quantum well infrared photodetector (QWIP) mounted thereon. The QWIP includes a lower contact layer formed on a planar surface of the substrate and a stack of alternate planar barrier layers and planar well layers sandwiched between the lower contact layer and an upper contact layer. The planes of the barrier layers and well layers are substantially parallel to the plane of the planar surface. A plurality of single-slit diffraction units are arranged as a grid in the stack for diffracting incident infrared radiation into a continuum of radiation components directed toward the well layers at different angles with respect to the planes of the well layers. The diffraction units are composed of cavities that extend through the barrier layers, the well layers and the upper contact layer. The cavities have rectangular, square and round shapes and are arranged in rows and columns to form the grid.
摘要:
An infrared photodetector comprising: a thin contact layer substantially transparent to infrared light; an absorption layer positioned such that light admitted through the substantially transparent thin contact area passes through the absorption layer; the absorption layer being configured to utilize resonance to increase absorption efficiency; at least one reflective side wall adjacent to the absorption layer being substantially non-parallel to the incident light operating to reflect light into the absorption layer for absorption of infrared radiation; and a top contact layer positioned adjacent to the active layer. A method of designing a photodetector comprising selecting a type of material based upon the wavelength range to be detected; determining a configuration geometry; calculating the electromagnetic field distributions using a computer simulated design of the configuration geometry, and determining a quantum efficiency spectrum at the desired wavelength or wavelength range; whereby the effectiveness of the photodetector is simulated prior to fabrication.
摘要:
A high-speed semiconductor device which comprises an emitter layer, a base layer, a collector layer, a potential barrier layer disposed between the emitter layer and the base layer, and a superlattice disposed between the base layer and the collector layer. The superlattice provides a multitude of quantum-mechanical transmission coefficients which can be applied to linear analog circuits and high frequency circuit. In addition, the high speed semiconductor device may act as a frequency multiplier, providing an output signal having 2n times as many frequencies as an input signal when n is the number of energy pass bands in said superlattice below a predetermined applied voltage.
摘要:
A multicolor .[.infrared.]. detection device comprising a number of doped antum well structural units. Each unit consists of a thick well and a thin well separated by a thin barrier. This arrangement produces strong coupling. .[.Infrared radiation.]. .Iadd.Radiation .Iaddend.incident on the device gives rise to intersubband absorption. For each transition a photosignal results which allows the detection of a plurality of incident frequencies.
摘要:
An IR photodetector including an IR semiconductor detector with conductive layers on opposite, parallel surfaces. A semiconductor substrate supports the semiconductor IR detector. A circuit is connected across the semiconductor IR detector to provide a bias voltage and for measuring current flow through the semiconductor IR detector. The semiconductor IR detector has a lattice structure made up of a series of potential wells separated by relatively wide potential barriers such that each well has two confined energy levels. A thin spike barrier is placed in the center of alternate potential wells to tailor the absorption characteristics of the semiconductor IR detector. Multicolor operation is achieved by selecting the appropriate well widths for a first group of potential wells and by placing thin spike barriers in a second group of potential wells that are alternately placed between the wells of the first group.
摘要:
A polarization-sensitive infrared (IR) detector array for use in infrared cameras and other IR based instruments, is comprised of multiple corrugated quantum well infrared photodetector elements (C-QWIP) that form a unitary detector unit (cell). The array is preferably two-dimensional, which can detect polarization contrast of an observed object in a scene. Each detector unit (cell) is formed by a group of C-QWIP detector elements having different groove orientations and cross sections. Each detector unit (cell) has at least two C-QWIP detector elements with their respective corrugations orthogonally oriented. Infrared detection by these detector cells is primarily by polarization contrast, compared to intensity contrast, which is well known in the art. By measuring polarization of reflected light from the observed object, the type of material can also be identified. A first array embodiment of the invention comprises four C-QWIP elements that form a cell. The second array embodiment of the invention comprises a detector having two C-QWIPs to form a detector cell.
摘要:
A semiconductor infrared detector having a transistor structure with a superlattice base. The superlattice base is between a multiple quantum well (MQW) structure and an electron energy high pass filter. The superlattice base restricts electrons to minibands resulting in no overlap in energy between the energies of the photoelectrons and the dark electrons. As a result, more photoelectrons reach the collector, and the emitter to collector photocurrent transfer ratio is increased. The increased transfer ratio results in increased sensitivity of the detector. The superlattice base between the MQW structure and the electron energy high pass filter comprises multiple alternating wells and barriers. The wells are preferably made of GaAs and the barriers are preferably made of Al.sub.x Ga.sub.1-x As, where x is equal to 0.25. However, alternate embodiments may include all the combinations of the Al molar ratio x in the barriers in the light sensitive MQW region, the superlattice base, and the electron energy high pass filter. The minibands created in the superlattice base confines the photoelectrons into a miniband by reducing the phonon emission rate, and removing the available states between the minibands.
摘要翻译:一种半导体红外检测器,具有具有超晶格基极的晶体管结构。 超晶格基极在多量子阱(MQW)结构和电子能量高通滤波器之间。 超晶格基极限制电子到微型电子束,导致光电子能量和暗电子的能量之间的能量没有重叠。 结果,更多的光电子到达集电极,并且发射极与集电极之间的光电流传递比增加。 增加的传送比导致检测器的灵敏度增加。 MQW结构和电子能量高通滤波器之间的超晶格基极包括多个交替的阱和势垒。 阱优选由GaAs制成,并且阻挡层优选由Al x Ga 1-x As制成,其中x等于0.25。 然而,替代实施例可以包括光敏MQW区域,超晶格基极和电子能量高通滤波器中的屏障中的Al摩尔比x的所有组合。 在超晶格基础上创建的迷你频带通过降低声子发射速率和去除迷你频带之间的可用状态将光电子限制在迷你频带内。
摘要:
A tunable radiation detector comprises a superlattice structure having a rality of quantum well units each separated by a first potential barrier and each having at least two doped quantum wells separated by a second potential barrier. The wells each have a lower energy level and a higher energy level. The first potential barriers substantially impede electrons at the lower levels from tunneling therethrough. The second potential barriers permit electrons at the lower levels to tunnel therethrough and prevent energy-level coupling between adjacent ones of the doped quantum wells. A biasing circuit is connected across the semiconductor superlattice structure. A photocurrent sensor is provided for measuring the amount of radiation absorbed by the semiconductor superlattice structure. The superlattice structure is made a part of a hot-electron transistor for providing amplification.
摘要:
A plurality of quantum-grid infrared photodetector (QGIP) elements are concatenated to form a spectrometer. Each of the QGIP elements is adapted to detect light at a particular range of wavelengths. Additionally, each QGIP element is adapted to produce a photocurrent that is proportional to the amount of light detected at its respective range of wavelengths. This type of configuration permits spectrometry within a spectrum that spans the aggregate ranges of wavelengths of each QGIP element.