摘要:
In a method for manufacturing a multi-thickness gate dielectric layer of a semiconductor device, a first dielectric layer is formed on a semiconductor substrate. A second dielectric layer is formed using a different dielectric material from the material constituting the first dielectric layer on the first dielectric layer. A portion of the second dielectric layer is selectively removed so as to selectively expose the first dielectric layer under the second dielectric layer. A portion of the exposed first dielectric layer is selectively removed so as to selectively expose the semiconductor substrate under the exposed first dielectric layer. Thereafter, a third dielectric layer having a thinner thickness than the first dielectric layer is formed on the exposed semiconductor substrate. As a result, a gate dielectric layer is formed to include a thick portion formed of the first dielectric layer and remaining second dielectric layer, a medium-thickness portion formed of the remaining first dielectric layer, and a thin portion formed of the third dielectric layer.
摘要:
In a method for manufacturing a multi-thickness gate dielectric layer of a semiconductor device, a first dielectric layer is formed on a semiconductor substrate. A second dielectric layer is formed using a different dielectric material from the material constituting the first dielectric layer on the first dielectric layer. A portion of the second dielectric layer is selectively removed so as to selectively expose the first dielectric layer under the second dielectric layer. A portion of the exposed first dielectric layer is selectively removed so as to selectively expose the semiconductor substrate under the exposed first dielectric layer. Thereafter, a third dielectric layer having a thinner thickness than the first dielectric layer is formed on the exposed semiconductor substrate. As a result, a gate dielectric layer is formed to include a thick portion formed of the first dielectric layer and remaining second dielectric layer, a medium-thickness portion formed of the remaining first dielectric layer, and a thin portion formed of the third dielectric layer.
摘要:
In a method for manufacturing a multi-thickness gate dielectric layer of a semiconductor device, a first dielectric layer is formed on a semiconductor substrate. A second dielectric layer is formed using a different dielectric material from the material constituting the first dielectric layer on the first dielectric layer. A portion of the second dielectric layer is selectively removed so as to selectively expose the first dielectric layer under the second dielectric layer. A portion of the exposed first dielectric layer is selectively removed so as to selectively expose the semiconductor substrate under the exposed first dielectric layer. Thereafter, a third dielectric layer having a thinner thickness than the first dielectric layer is formed on the exposed semiconductor substrate. As a result, a gate dielectric layer is formed to include a thick portion formed of the first dielectric layer and remaining second dielectric layer, a medium-thickness portion formed of the remaining first dielectric layer, and a thin portion formed of the third dielectric layer.
摘要:
A complementary metal oxide semiconductor (CMOS) device having improved performance includes a first device active region including at least one pair of transistor active regions wherein one transistor active region has a first width and the other transistor active region for forming a contact has a second width, a first gate arranged on the first device active region, a MOS transistor of a first conductivity type including a source/drain region of the first conductivity type formed in the first device active region, a second device active region having a third width greater than the first width, a second gate arranged on the second device active region, and a MOS transistor of a second conductivity type including a source/drain region of the second conductivity type formed in the second device active region.
摘要:
A complementary metal oxide semiconductor (CMOS) device having improved performance includes a first device active region including at least one pair of transistor active regions wherein one transistor active region has a first width and the other transistor active region for forming a contact has a second width, a first gate arranged on the first device active region, a MOS transistor of a first conductivity type including a source/drain region of the first conductivity type formed in the first device active region, a second device active region having a third width greater than the first width, a second gate arranged on the second device active region, and a MOS transistor of a second conductivity type including a source/drain region of the second conductivity type formed in the second device active region.
摘要:
A semiconductor device and a method for manufacturing the same are provided. The structure of a semiconductor device includes gate electrodes having a T-shaped structure comprised of first and second gate electrodes having low gate resistance and low parasitic capacitance and a halo ion-implanted region in which a short channel effect can be effectively suppressed. The method for manufacturing the device is capable of performing high angle ion implantation without extending gate-to-gate space.