Abstract:
The present disclosure relates to a ligand compound, a catalyst system for oligomerization, and a method for olefin oligomerization using the same. The catalyst system for oligomerization using the ligand compound according to the present disclosure has excellent catalytic activity, exhibits high selectivity to 1-hexene and 1-octene, and greatly reduces the production of the by-products, thereby enabling efficient preparation of alpha-olefin.
Abstract:
The method for oligomerizing olefin according to the present disclosure is a method for oligomerizing olefin using an oligomerization catalyst system and includes deteriorating the activity of the oligomerization catalyst system by injecting a deactivator in a latter part of a multimerization reaction of olefin. The deactivator may include an additive for polymer containing at least one functional group selected from the group consisting of a hydroxyl group, an amine group and an amide group. According to the oligomerizing method, the isomer of 1-hexene and/or 1-octene and alpha-olefins with C10 to C40 may be decreased via the restraint of the additional side reaction of a product. Since the deactivator is an additive for enhancing the physical properties of a polymer, a separating process thereof is not required, thereby improving economic feasibility and productivity.
Abstract:
The present invention relates to a compound represented by the chemical formula 1, a catalyst system for olefin oligomerization comprising the same, and a method for oligomerizign olefins using the same, and the catalyst system for olefin oligomerization according to the present invention has excellent catalytic activity as well as high selectivity for 1-hexene or 1-octene, thereby enabling more efficient preparation of alpha-olefins.
Abstract:
The present invention relates to a 1-octene composition. The 1-octene composition according to the present invention is prepared by ethylene oligomerization and comprises a high content of 1-octene and monomers useful for copolymerization of 1-octene at the same time.
Abstract:
Provided are a novel metallocene compound, a catalyst composition including the same, and a method of preparing a polyolefin using the same. The metallocene compound according to the present invention and the catalyst composition including the same may be used for the preparation of a polyolefin, may have excellent polymerization ability, and may produce a polyolefin having an ultra-high molecular weight. In particular, when the metallocene compound according to the present invention is employed, an olefin-based polymer having an ultra-high molecular weight may be polymerized because the metallocene compound shows high polymerization activity even when it is supported on a support.
Abstract:
This disclosure relates to a novel ligand compound that can oligomerize ethylene with high catalyst activity and selectivity, a catalyst system for olefin oligomerization including the same, and a method for olefin oligomerization using the same.
Abstract:
This disclosure relates to a silica support for a metallocene catalyst used for olefin polymerization, a preparation method thereof, a metallocene catalyst using the same, and olefin polymer. Specifically, according to the present invention, a silica support used for preparing a metallocene supported catalyst is treated with a specific halogenized metal compound, thereby diversifying reaction sites to a cocatalyst when preparing a metallocene catalyst, and thus, the molecular weight distribution of produced olefin polymer may be much broadened and polymer having high molecular weight may be obtained compared to the existing support, even if the same metallocene catalyst is supported.
Abstract:
The present invention relates to a process for preparing an olefin oligomer including a step of contacting an olefin monomer with a composite catalyst in the presence of a halogenated organic solvent, wherein the composite catalyst includes: a transition metal compound; a cocatalyst; and an organic ligand including a diphosphonoamine compound in which two or more diphosphonoamines are combined via a polyvalent functional group.
Abstract:
This disclosure relates to a ligand compound, a catalyst system for olefin oligomerization, and a method for olefin oligomerization using the same. The catalyst system for olefin oligomerization according to the present invention has excellent catalytic activity, and yet, exhibits high selectivity to 1-hexene and 1-octene, thus enabling efficient preparation of alpha-olefin.
Abstract:
The present disclosure relates to a method for oligomerization of olefins. The method for oligomerization of olefins according to the present disclosure not only provides excellent catalytic activity and stable process operation, but also exhibits high selectivity to 1-hexene or 1-octene by using a catalyst system including an activity modifier.