Abstract:
Disclosed herein is a secondary battery constructed in a structure in which an electrode assembly having a cathode/separator/anode arrangement is mounted in a battery case made of a laminate sheet including a resin layer and a metal layer, electrode tabs of the electrode assembly are coupled to corresponding electrode leads, and the electrode assembly is sealed in the battery case while electrode leads are exposed to the outside of the battery case, wherein a protective film is attached to coupling regions between the electrode tabs and the electrode leads for sealing the coupling regions between the electrode tabs and the electrode leads. The secondary battery according to the present invention is constructed in a structure in which the coupling regions are sealed by the protective film, unlike a conventional secondary battery constructed in a structure in which the coupling regions between the electrode tabs and the electrode leads are exposed in the battery case. As a result, the electrode leads are protected from external impacts, such as falling of the battery. Consequently, no internal short circuit occurs, and therefore, the safety of the battery is increased.
Abstract:
Provided is a non-aqueous electrolyte-based, high-power lithium secondary battery having a long service life and superior safety at both room temperature and high temperature, even after repeated high-current charging and discharging. The battery comprises a mixture of a lithium/manganese spinel oxide having a substitution of a manganese (Mn) site with a certain metal ion and a lithium/nickel/cobalt/manganese composite oxide, as a cathode active material.
Abstract:
Provided is a non-aqueous electrolyte-based, high-power lithium secondary battery having a long service life and superior safety at both room temperature and high temperature, even after repeated high-current charging and discharging. The battery comprises a mixture of a lithium/manganese spinel oxide having a substitution of a manganese (Mn) site with a certain metal ion and a lithium/nickel/cobalt/manganese composite oxide, as a cathode active material.
Abstract:
Provided is a non-aqueous electrolyte-based, high-power lithium secondary battery having a long service life and superior safety at both room temperature and high temperature, even after repeated high-current charging and discharging. The battery comprises a cathode active material composed of a mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese composite oxide wherein the cathode active material exhibits the life characteristics that the capacity at 300 cycles is more than 70% relative to the initial capacity, in the provision of satisfying the condition (i) regarding the particle size and the condition (ii) regarding the mixing ratio.
Abstract:
Disclosed herein is a secondary battery constructed in a structure in which an electrode assembly having a cathode/separator/anode arrangement is mounted in a battery case made of a laminate sheet including a resin layer and a metal layer, electrode tabs of the electrode assembly are coupled to corresponding electrode leads, and the electrode assembly is sealed in the battery case while electrode leads are exposed to the outside of the battery case, wherein a protective film is attached to coupling regions between the electrode tabs and the electrode leads for sealing the coupling regions between the electrode tabs and the electrode leads. The secondary battery according to the present invention is constructed in a structure in which the coupling regions are sealed by the protective film, unlike a conventional secondary battery constructed in a structure in which the coupling regions between the electrode tabs and the electrode leads are exposed in the battery case. As a result, the electrode leads are protected from external impacts, such as falling of the battery. Consequently, no internal short circuit occurs, and therefore, the safety of the battery is increased.
Abstract:
Disclosed herein is a stacking or stacking/folding type electrode assembly of a cathode/separator/anode structure, wherein the electrode assembly is constructed in a structure in which tabs (electrode tabs), having no active material applied thereto, protrude from electrode plates constituting the electrode assembly, the electrode tabs are electrically connected to an electrode lead, and the pluralities of electrode tabs are joined to the top and the bottom of the electrode lead at an electrode lead-electrode tabs joint portion such that the resistance difference between electrodes at the electrode lead-electrode tabs joint portion is minimized. Also disclosed is an electrochemical cell including the electrode assembly.
Abstract:
Disclosed herein is a stacking or stacking/folding type electrode assembly of a cathode/separator/anode structure, wherein the electrode assembly is constructed in a structure in which tabs (electrode tabs), having no active material applied thereto, protrude from electrode plates constituting the electrode assembly, the electrode tabs are electrically connected to an electrode lead, and the pluralities of electrode tabs are joined to the top and the bottom of the electrode lead at an electrode lead-electrode tabs joint portion such that the resistance difference between electrodes at the electrode lead-electrode tabs joint portion is minimized. Also disclosed is an electrochemical cell including the electrode assembly.
Abstract:
Provided is a non-aqueous electrolyte-based, high-power lithium secondary battery having a long service life and superior safety at both room temperature and high temperature, even after repeated high-current charging and discharging. The battery comprises a cathode active material composed of a mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese composite oxide wherein the cathode active material exhibits the life characteristics that the capacity at 300 cycles is more than 70% relative to the initial capacity, in the provision of satisfying the condition (i) regarding the particle size and the condition (ii) regarding the mixing ratio.
Abstract:
Disclosed herein is an electrochemical cell constructed in a structure in which a plurality of full cells or bicells, as unit cells, are folded by a separation film formed in the shape of a long sheet, and separators of the unit cells are secured to the separation film by thermal welding. The electrochemical cell according to the present invention has the effect of preventing the electrodes of the stacked electrodes from being separated from the separation film or from being twisted due to external impacts and vibrations, thereby restraining the electrochemical cell from generating heat or catching fire. Furthermore, the structural stability of the electrochemical cell is maintained even when the temperature of the electrochemical cell is increased, or the volume of the electrochemical cell is increased due to the generation of gas.
Abstract:
Disclosed herein is an electrochemical cell constructed in a structure in which a plurality of full cells or bicells, as unit cells, are folded by a separation film formed in the shape of a long sheet, and separators of the unit cells are secured to the separation film by thermal welding. The electrochemical cell according to the present invention has the effect of preventing the electrodes of the stacked electrodes from being separated from the separation film or from being twisted due to external impacts and vibrations, thereby restraining the electrochemical cell from generating heat or catching fire. Furthermore, the structural stability of the electrochemical cell is maintained even when the temperature of the electrochemical cell is increased, or the volume of the electrochemical cell is increased due to the generation of gas.